Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Leaf Area Index Measurement
2.3. Monitoring Soil Water Contents
2.4. Measurement of Evapotranspiration
2.4.1. Soil Evaporation
2.4.2. Transpiration
2.4.3. Canopy Interception
2.5. Meteorological
2.6. Reference Evapotranspiration
2.7. Crop Coefficient Calculations
2.8. Statistical Analysis
3. Results
3.1. Leaf Area Index
3.2. Precipitation and Reference Evapotranspiration
3.3. Evapotranspiration
3.4. Leaf Area Index and Evapotranspiration Relationship
3.5. Leaf Area Index and Crop Coefficient Relationship
4. Discussion
4.1. Leaf Area Index
4.2. Precipitation and Reference Evapotranspiration
4.3. Evapotranspiration
4.4. Leaf Area Index and Evapotranspiration Relationship
4.5. Leaf Area Index and Crop Coefficient Relationship
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raz-Yaseef, N.; Yakir, D.; Schiller, G.; Cohen, S. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agric. For. Meteorol. 2012, 157, 77–85. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrig. Drain. Pap. 1998, 56, 300. [Google Scholar]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of variable-infiltration capacity model and MODIS-terra satellite-derived grid-scale evapotranspiration estimates in a River Basin with Tropical Monsoon-Type climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multiscenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of Some Reference Evapotranspiration Equations for California. J. Irrig. Drain Eng. 2005, 131, 73–84. [Google Scholar] [CrossRef]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s Standardized Reference Evapotranspiration Equation. In Proceedings of the Watershed Management and Operations Management 2000, Fort Collins, CO, USA, 20–24 June 2000; pp. 1–11. [Google Scholar]
- Howes, D.J.; Fox, P.; Hutton, P. Evapotranspiration from Natural Vegetation in the Central Valley of California: Monthly Grass Reference-Based Vegetation Coefficients and the Dual Crop Coefficient Approach. J. Hydrol. Eng. 2015, 20, 04015004. [Google Scholar] [CrossRef]
- Gurski, B.C.; Jerszurki, D.; De Souza, J.L.M. Alternative reference evapotranspiration methods for the main climate types of the state of Paraná, Brazil. Pesqui. Agropecu. Bras. 2018, 53, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Akumaga, U.; Tarhule, A.; Yusuf, A.A. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agric. For. Meteorol. 2017, 232, 225–234. [Google Scholar] [CrossRef]
- Gundalia, M.; Dholakia, M. Modelling daily reference evapotranspiration in Middle South Saurashtra Region of India for monsoon season using dominant meteorological variables and the FAO-56 penman-monteith method. Int. J. Sustain. Water Environ. Syst. 2016, 8, 101–108. [Google Scholar]
- Allen, R.G.; Pereira, L.; Raes, D. Crop Evapotranspiration. Guidlines for Computing Crop Water Requirments; FAO: Rome, Italy, 2006. [Google Scholar]
- Alexandris, S.; Proutsos, N. How signifificant is the effect of the surface characteristics on the Reference Evapotranspiration estimates? Agric. Water Manag. 2020, 237, 106181. [Google Scholar] [CrossRef]
- Jabloun, M.D.; Sahli, A. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agric. Water Manag. 2008, 95, 707–715. [Google Scholar] [CrossRef]
- Almorox, J.; Quej, V.H.; Martí, P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. J. Hydrol. 2015, 528, 514–522. [Google Scholar] [CrossRef]
- Awal, R.; Habibi, H.; Fares, A.; Deb, S. Estimating reference crop evapotranspiration under limited climate data in West Texas. J. Hydrol. Reg. Stud. 2020, 28, 100677. [Google Scholar] [CrossRef]
- Kwon, H.; Choi, M. Error assessment of climate variables for FAO-56 reference evapotranspiration. Theor. Appl. Clim. 2011, 112, 81–90. [Google Scholar] [CrossRef]
- Samani, Z. Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Jensen, M.E.; Allen, R.G. Evaporation, Evapotranspiration, and Irrigation Water Requirements; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar]
- Di Stefano, C.; Ferro, V. Estimation of Evapotranspiration by Hargreaves Formula and Remotely Sensed Data in Semi-arid Mediterranean Areas. J. Agric. Eng. Res. 1997, 68, 189–199. [Google Scholar] [CrossRef]
- Vanderlinden, K.; Giraldez, J.; Van Meirvenne, M. Assessing Reference Evapotranspiration by the Hargreaves Method in Southern Spain. J. Irrig. Drain. Eng. 2004, 130, 184–191. [Google Scholar] [CrossRef]
- Mendicino, G.; Senatore, A. Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in Southern Italy. J. Irrig. Drain. Eng. 2013, 139, 349–362. [Google Scholar] [CrossRef]
- Netzer, Y.; Yao, C.; Shenker, M.; Bravdo, B.-A.; Schwartz, A. Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrig. Sci. 2009, 27, 109–120. [Google Scholar] [CrossRef]
- Netzer, Y.; Shenker, M.; Schwartz, A. Effects of irrigation using treated wastewater on table grape vineyards: Dynamics of sodium accumulation in soil and plant. Irrig. Sci. 2014, 32, 283–294. [Google Scholar] [CrossRef]
- Williams, L.E.; Fidelibus, M.W. Measured and estimated water use and crop coefficients of grapevines trained to overhead trellis systems in California’s San Joaquin Valley. Irrig. Sci. 2016, 34, 431–441. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Ortega-Farías, S.; Lagos, L.O.; Kleissl, J.; Morales, L.; PobleteEcheverría, C.; Allen, R.G. Crop coeffiffifficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrig. Sci. 2012, 30, 485–497. [Google Scholar] [CrossRef]
- Palomo, M.J.; Díaz-Espejo, A.; Férnandez, J.E.; Moreno, F.; Girón, I.F. Water balance in an olive orchard. Acta Hortic. 2000, 537, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Dragoni, D.; Lakso, A.N.; Piccioni, R.M.; Tarara, J.M. Transpiration of grapevines in the humid northeastern United States. Am. J. Enol. Vitic. 2006, 57, 460–467. [Google Scholar]
- Intrigliolo, D.S.; Lakso, A.N.; Piccioni, R.M. Grapevine cv. ‘riesling’ water use in the northeastern United States. Irrig. Sci. 2009, 27, 253–262. [Google Scholar] [CrossRef]
- Testi, L.; Villalobos, F.J.; Orgaz, F. Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric. For. Meteorol. 2004, 121, 1–18. [Google Scholar] [CrossRef]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Estimating cotton water consumption using a time series of Sentinel-2 imagery. Agric. Water Manag. 2018, 207, 44–52. [Google Scholar] [CrossRef]
- Vanino, S.; Pulighe, G.; Nino, P.; De Michele, C.; Bolognesi, S.; D’Urso, G. Estimation of evapotranspiration and crop coeffiffifficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens. 2015, 7, 14708–14730. [Google Scholar] [CrossRef] [Green Version]
- Girona, J.; del Campo, J.; Mata, M.; Lopez, G.; Marsal, J. A comparative study of apple and pear tree water consumption measured with two weighing lysimeters. Irrig. Sci. 2010, 29, 55–63. [Google Scholar] [CrossRef]
- Lorite, I.; Santos, C.; Testi, L.; Fereres, E. Design and construction of a large weighing lysimeter in an almond orchard. Span. J. Agric. Res. 2012, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- García-Tejero, I.F.; Hernandez, A.; Rodriguez, V.; Ponce, J.; Ramos, V.; Muriel, J.; DuranZuazo, V.H. Estimating almond crop coeffiffifficients and physiological response to water stress in semiarid environments (SW Spain). J. Agric. Sci. Technol. 2015, 17, 1255–1266. [Google Scholar]
- Ben-Gal, A.; Kool, D.; Agam, N.; van Halsema, G.E.; Yermiyahu, U.; Yafe, A.; Presnov, E.; Erel, R.; Majdop, A.; Zipori, I.; et al. Whole-tree water balance and indicators for short-term drought stress in non-bearing ‘Barnea’ olives. Agric. Water Manag. 2010, 98, 124–133. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Trambouze, W.; Bertuzzi, P.; Voltz, M. Comparison of methods for estimating actual evapotranspiration in a row-cropped vineyard. Agric. For. Meteorol. 1998, 91, 193–208. [Google Scholar] [CrossRef]
- Sonnentag, O.; Talbot, J.; Chen, J.M.; Roulet, N.T. Using direct or indirect measurements of leaf area index to chaeacterize the shrub canopy in an ombrotrophic peat land. Agric. For. Meteorol. 2007, 144, 200–212. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Hu, Z.H.; LI, Q.; Zhang, X.S.; Zhang, Q. Effect of leaf area index change on evapotranspiration and water yield in northern China. Chin. J. Eco-Agric. 2017, 25, 1206–1215. [Google Scholar]
- Meng, Q.Q. Soil Moisture Consumption Pattern and Growth Response of Apple Orchard in the Loess Plateau. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2011. [Google Scholar]
- Munitz, S.; Schwartz, A.; Netzer, Y. Water consumption, crop coeffiffifficient and leaf area relations of a Vitis vinifera cv. ‘Cabernet Sauvignon’ vineyard. Agric. Water Manag. 2019, 219, 86–94. [Google Scholar] [CrossRef]
- Mansour, T.; Daniel, M.; Prasanna, G.; Jean, L.; Steiner, H.K.; Tadesse, A.M.; Nelson, P.S. Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model. Agric. Water Manag. 2018, 208, 299–306. [Google Scholar]
- Wang, S.; Xia, D.; Ma, J.; Han, T.; Zhu, G. The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China. Agric. Water Manag. 2019, 212, 388–398. [Google Scholar] [CrossRef]
- Du, S.Q.; Kang, S.Z.; Li, F.S.; Du, T.S. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China. Agric. Water Manag. 2017, 179, 184–192. [Google Scholar] [CrossRef]
- Gong, D.Z.; Kang, S.Z.; Yao, L.M.; Zhang, L. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrol. Process. 2006, 21, 931–938. [Google Scholar] [CrossRef]
- Wang, Y.N.; Hang, X.M.; Lu, L.; Gu, N.; Wang, Z.L.; Liu, M.; Wang, G.Q. Estimation of crop coefficient and evapotranspiration of summer maize by path analysis combined with BP neural network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 109–116. [Google Scholar]
- Sánchez, J.M.; López-Urrea, R.; Rubio, E.; González-Piqueras, J.; Caselles, V. Assessing crop coefficients of sunflflower and canola using two-source energy balance and thermal radiometry. Agric. Water Manag. 2014, 137, 23–29. [Google Scholar] [CrossRef]
- Yang, P.; Hu, H.; Tian, F.; Zhang, Z.; Dai, C. Crop coeffiffifficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China. Agric. Water Manag. 2016, 171, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, D.; Yang, Z.; Seki, K.; Singh, M.; Wang, L. Changes in rainfall partitioning and its effect on soil water replenishment after the conversion of croplands into apple orchards on the Loess Plateau. Agric. Ecosyst. Environ. 2021, 312, 107342. [Google Scholar] [CrossRef]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Granier, A. A new method of sap flow measurement in tree stems. Ann. Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sapflow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Oren, R.; Pataki, D.E. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 2001, 127, 549–559. [Google Scholar] [CrossRef]
- Santiago, L.S.; Goldstein, G.; Meinzer, F.C.; Fownes, J.H.; Mueller-Dombois, D. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiol. 2000, 20, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, L. Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China. Agric. Water Manag. 2017, 191, 1–15. [Google Scholar] [CrossRef]
- Wei, S.P.; Wang, L.; Wu, F.Q. Hydrological propeties of canopy of acacia in loess hilly and gully region. J. Nanjing For. Univ. 2008, 32, 43–48. [Google Scholar]
- Lu, J.F.; Ma, Q.Y.; Liu, S.H.; Tian, P.; Chen, Y. Rainfall interception capacity of a Pinus tabularformis plantation in Miyun, Beijing. J. Beijing For. Univ. 2005, 27, 129–132. [Google Scholar]
- Liu, C.; Sun, G.; McNulty, S.G.; Kang, S. An Improved Evapotranspiration Model for an Apple Orchard in Northwestern China. Trans. ASABE 2015, 58, 1253–1264. [Google Scholar]
- Guo, X.-M.; Yang, X.-T.; Chen, M.-X.; Li, M.; Wang, Y.-A. A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precis. Agric. 2014, 16, 180–200. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L. Canopy interception of apple orchards should not be ignored when assessing evapotranspiration partitioning on the Loess Plateau in China. Hydrol. Process. 2018, 33, 372–382. [Google Scholar] [CrossRef]
- Liu, C.; Du, T.; Li, F.; Kang, S.; Li, S.; Tong, L. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China. Agric. Water Manag. 2012, 104, 193–202. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.-L.; Liu, W. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agric. For. Meteorol. 2012, 154–155, 147–155. [Google Scholar] [CrossRef]
- Yoder, R.E.; Ley, T.W.; Elliott, R.L. Measurement and reporting practices for automatic agricultural weather stations. In Proceedings of the 4th National Irrigation Symposium, ASAE, St. Joseph, MI, USA, 14–16 November 2000. [Google Scholar]
- Jensen, D.T.; Hargreaves, G.H.; Temesgen, B.; Allen, R.G. Computation of ET0 under nonideal conditions. J. Irrig. Drain. Eng. 1997, 123, 394–400. [Google Scholar] [CrossRef]
- Li, J.Y. Soil Water Dynamics and Evapotranspiration of Hilly Apple Orchard in the Loess Plateau. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2017. [Google Scholar]
- Cavanaugh, M.L.; Kurc, S.A.; Scott, R.L. Evapotranspiration partitioning in semiarid shrubland ecosystems: A two-site evaluation of soil moisture control on transpiration. Ecohydrology 2011, 4, 671–681. [Google Scholar] [CrossRef]
- Wang, Y.P. Water Balance and Evapotranspiration of Apple Orchards on the Gully Region of Loess Plateau; Northwest A&F University: Yangling, China, 2014. [Google Scholar]
- Yu, J.F. Study on the Characteristics of Apple Tree Transpiration and Orchard Evapotranspiration on the Loess Plateau. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2010. [Google Scholar]
- Li, M.X.; Du, S.N.; Bai, G.S.; Geng, G.J. Effects of renewal pruning on soil moisture and growth of apple tree. J. Zhejiang Univ. 2012, 38, 467–476. [Google Scholar]
- Zhang, Y.Q.; Kang, S.Z.; Ward, E.J.; Ding, R.S.; Zhang, X.; Zheng, R. Evapotranspiration Compon. Determ. by sapflow and microlysimetry techniques of a vineyard in northwest China: Dynamics and inflfluential factors. Agric. Water Manag. 2011, 98, 1207–1214. [Google Scholar] [CrossRef]
- Yang, X.G.; Liu, H.L.; Wang, Y.L.; Yu, H.N. Research on evapotranspiration of field ecological system of summer maize in Northern Plain. Chin. J. Eco-Agric. 2003, 11, 71–73. [Google Scholar]
- Wang, Y.R.; Wang, Y.H.; Yu, P.T.; Xiong, W.; Du, A.P.; Li, Z.H.; Liu, Z.B.; Ren, L.; Xu, L.H.; Zuo, H.J. Simulated responses of evapotranspiration and runoff to changes in the leaf area index of a Larix principis-rupprechtii plantation. Acta Ecol. Sin. 2016, 36, 6928–6938. [Google Scholar]
- Juhász, Á.; Hrotkó, K. Comparison of the transpiration part of two sources evapotranspiration model and the measurements of sap flow in the estimation of the transpiration of sweet cherry orchards. Agric. Water Manag. 2014, 143, 142–150. [Google Scholar] [CrossRef]
- Benyon, R.G.; Theiveyanathan, S.; Doody, T.M. Impacts of tree plantations on groundwater in south-eastern Australia. Aust. J. Bot. 2006, 54, 181–192. [Google Scholar] [CrossRef]
- Almeida, A.C.; Soares, J.V.; Landsberg, J.J.; Rezende, G.D. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For. Ecol. Manag. 2007, 251, 10–21. [Google Scholar] [CrossRef]
- Tian, A.; Wang, Y.H.; Webb, A.A.; Liu, Z.; Ma, J.; Yu, P.; Wang, X. Water yield variation with elevation, tree age and density of larch plantation in the Liupan Mountains of the Loess Plateau and its forest management implications. Sci. Total Environ. 2021, 752, 141752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Liu, W.Z.; Han, X.Y. Characteristics of evapotranspiration of winter wheat in Changwu Plateau, Shaanxi. Jiangsu Agric. Sci. 2013, 41, 72–75. [Google Scholar]
- Juul, L.; Milena, H.; Jacobs, C.M.J.; Sjoerd, E.A.T.M.; Karofeld, E.; Berendse, F. How does tree density affect water loss of peatlands? A mesocosm experiment. PLoS ONE 2014, 9, e91748. [Google Scholar]
- Li, X.C.; Jiang, T.; Wen, S.S.; Wang, Y.J.; Qiu, X.F. Analysis of Temporal and Spatial Changes and Influencing Factors of Actual Evapotranspiration in the Pearl River Basin. J. Trop. Meteorol. 2014, 30, 483–494. [Google Scholar]
Tree Number | Tree Age (Years) | Canopy Diameter (cm) | Canopy Height (cm) | Stem Height (cm) | Diameter (cm) | Canopy Volume (m3) | Land Area (m2) |
---|---|---|---|---|---|---|---|
1 | 7 | 401.0 | 340.0 | 75.0 | 10.8 | 28.6 | 12.6 |
2 | 5 | 317.5 | 320.0 | 56.0 | 6.7 | 16.9 | 7.9 |
3 | 7 | 442.5 | 310.0 | 73.0 | 12.4 | 31.8 | 15.4 |
4 | 6 | 315.0 | 220.0 | 79.0 | 7.3 | 11.4 | 7.8 |
5 | 9 | 458.5 | 216.0 | 90.0 | 11.2 | 23.8 | 16.5 |
6 | 7 | 399.5 | 231.0 | 81.0 | 13.0 | 19.3 | 12.5 |
7 | 7 | 401.5 | 270.0 | 77.0 | 12.2 | 26.6 | 14.3 |
8 | 7 | 413.5 | 282.0 | 83.0 | 14.1 | 28.7 | 16.2 |
9 | 7 | 420.1 | 295.0 | 82.0 | 13.8 | 29.4 | 17.1 |
Year | Indice | April | May | June | July | August | September | Sum |
---|---|---|---|---|---|---|---|---|
2019 | P (mm) | 65.5 | 8.9 | 42.4 | 90.5 | 101.1 | 91.1 | 399.5 |
ET0 (mm) | 125.5 | 131.9 | 133.8 | 148.1 | 151.9 | 138.7 | 829.9 | |
2020 | P (mm) | 16.3 | 10.7 | 14.2 | 58.3 | 245.2 | 67.2 | 411.9 |
ET0 (mm) | 114.2 | 125.0 | 135.6 | 148.8 | 192.7 | 126.3 | 842.6 |
Year | Month | E (mm) | T (mm) | Ic (mm) | ET (mm) | Percentage (%) |
---|---|---|---|---|---|---|
2019 | 4 | 29.1 | 4.0 | 2.5 | 35.6 | 8.4 |
5 | 18.2 | 10.3 | 0.9 | 29.3 | 6.9 | |
6 | 23.5 | 20.5 | 3.7 | 47.7 | 11.2 | |
7 | 40.2 | 49.4 | 11.2 | 100.8 | 23.7 | |
8 | 52.3 | 57.2 | 12.8 | 122.3 | 28.8 | |
9 | 40.0 | 39.2 | 9.9 | 89.0 | 21.0 | |
Total | 203.3 | 180.6 | 41.0 | 424.8 | 100.0 | |
2020 | 4 | 21.9 | 3.6 | 1.2 | 26.7 | 5.8 |
5 | 16.4 | 11.6 | 1.0 | 29.0 | 6.3 | |
6 | 26.7 | 24.9 | 0.9 | 52.5 | 11.3 | |
7 | 40.6 | 47.6 | 7.0 | 95.2 | 20.6 | |
8 | 86.3 | 75.5 | 23.8 | 175.6 | 37.9 | |
9 | 35.7 | 40.0 | 8.4 | 84.2 | 18.2 | |
Total | 227.5 | 203.2 | 42.3 | 463.2 | 100.0 |
Year | Month | Rainfall (mm) | ETD (mm) | ETI (mm) | ET0 (mm) | KcI | Ks | Kc |
---|---|---|---|---|---|---|---|---|
2019 | 4 | 65.5 | 35.6 | 54.0 | 125.5 | 0.43 | 0.66 | 0.28 |
5 | 8.9 | 29.3 | 55.4 | 131.9 | 0.42 | 0.53 | 0.22 | |
6 | 42.4 | 47.7 | 66.3 | 133.8 | 0.50 | 0.72 | 0.36 | |
7 | 90.5 | 100.8 | 109.6 | 148.1 | 0.74 | 0.92 | 0.68 | |
8 | 101.1 | 122.3 | 106.3 | 151.9 | 0.70 | 1.15 | 0.81 | |
9 | 91.1 | 89.1 | 83.2 | 138.7 | 0.60 | 1.07 | 0.64 | |
Total | 399.5 | 424.8 | 474.8 | 829.9 | / | / | / | |
2020 | 4 | 16.3 | 26.7 | 46.0 | 114.2 | 0.40 | 0.58 | 0.23 |
5 | 10.7 | 29.0 | 51.7 | 125.0 | 0.41 | 0.56 | 0.23 | |
6 | 14.2 | 52.5 | 79.5 | 135.6 | 0.59 | 0.66 | 0.39 | |
7 | 58.3 | 95.2 | 117.6 | 148.8 | 0.79 | 0.81 | 0.64 | |
8 | 245.2 | 175.6 | 188.8 | 192.7 | 0.98 | 0.93 | 0.91 | |
9 | 67.2 | 84.2 | 85.9 | 126.3 | 0.68 | 0.98 | 0.67 | |
Total | 411.9 | 463.2 | 569.6 | 842.6 | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Wang, Y.-P. Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau. Water 2021, 13, 1957. https://doi.org/10.3390/w13141957
Jia Q, Wang Y-P. Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau. Water. 2021; 13(14):1957. https://doi.org/10.3390/w13141957
Chicago/Turabian StyleJia, Qiong, and Yan-Ping Wang. 2021. "Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau" Water 13, no. 14: 1957. https://doi.org/10.3390/w13141957
APA StyleJia, Q., & Wang, Y.-P. (2021). Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau. Water, 13(14), 1957. https://doi.org/10.3390/w13141957