Modeling Shallow Urban Groundwater at Regional and Local Scales: A Case Study in Detroit, MI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Southeast Michigan Regional and Local Field Setting
2.1.1. Regional Scale: General Depositional Environment and Drainage Characteristics
2.1.2. Local Scale: RecoveryPark Field Site
Type | Name | Alias | X 1 | Y 1 | Top Elevation 2,3 (m) | Depth to Water Table (m) | Observed Value (m) |
---|---|---|---|---|---|---|---|
Deeper Observation Wells | RP-C-01 D | C1D | −83.0437139 | 42.3672917 | 192.27698 | 1.8212 | 190.4558 |
RP-C-02 D | C2D | −83.0432556 | 42.3674583 | 192.10325 | 1.0790 | 191.0243 | |
RP-C-05 D | C5D | −83.0427917 | 42.3676222 | 191.9417 | 1.3122 | 190.6295 | |
RP-N-05 D | N5D | −83.0432250 | 42.3691139 | 192.32948 | 2.4201 | 189.9094 | |
RP-N-06 D | N6D | −83.0430194 | 42.3686500 | 191.44782 | 1.4356 | 190.0122 | |
RP-S-05 D | S5D | −83.0419250 | 42.3671778 | 191.65519 | 1.9111 | 189.7441 | |
RP-SE-01 D | SE1D | −83.0435528 | 42.3668583 | 192.49644 | 1.3457 | 191.1507 | |
RP-SW-02 D | SW2D | −83.0443111 | 42.3665417 | 193.4044 | 2.2906 | 191.1138 | |
RP-NE-04 D | NE4D | −83.0446444 | 42.3685250 | 192.13373 | 1.9126 | 190.2211 | |
RP-NW-03 D | NW3D | −83.0430194 | 42.3686500 | 192.90198 | No data recorded | No data recorded | |
Shallow Observation Wells | RP-C-01 S | C1S | −83.0437194 | 42.3672889 | 192.27394 | 0.6614 | 191.6125 |
RP-C-02 S | C2S | −83.0432444 | 42.3674611 | 191.28435 | 0.1798 | 191.1045 | |
RP-C-03 S | C3S | −83.0426111 | 42.3673639 | 192.60767 | 1.7450 | 190.8627 | |
RP-C-04 S | C4S | −83.0427000 | 42.3674972 | 191.92951 | 1.0973 | 190.8322 | |
RP-N-05 S | N5S | −83.0432194 | 42.3691056 | 192.40397 | 2.0604 | 190.3435 | |
RP-N-06 S | N6S | −83.0429889 | 42.3686722 | 191.44349 | 0.9876 | 190.4559 | |
RP-NE-04 S | NE4S | −83.0446444 | 42.3685333 | 192.48642 | 1.4722 | 191.0142 | |
RP-NW-03 S | NW3S | −83.0454500 | 42.3682472 | 192.35318 | 1.1841 | 191.1690 | |
RP-S-05 S | S5S | −83.0419333 | 42.3671750 | 191.63081 | 0.8915 | 190.7393 | |
RP-S-06 S | S6S | −83.0424778 | 42.3671306 | 192.50219 | 1.7054 | 190.7968 | |
RP-SW-02 S | SW2S | −83.0443139 | 42.3665472 | 193.04669 | 1.4402 | 191.6065 | |
RP-SE-01 S | SE1S | −83.0435444 | 42.3668500 | 192.50558 | 0.7254 | 191.7802 | |
RP-S-07 S | S7S | −83.0425611 | 42.3672667 | 192.8624 | 1.9888 | 190.8736 | |
RP-C-05 S | C5S | −83.0427833 | 42.3676250 | 191.9824 | 1.0287 | 190.9537 |
2.2. Regional Scale Groundwater Model: Metro Detroit Watersheds
2.3. Local Scale Model: RecoveryPark
2.3.1. Urban Water Budget
2.3.2. Groundwater Model
3. Results
3.1. Regional Scale Groundwater Model: Metro Detroit Watersheds
3.2. Local Scale Model: RecoveryPark
3.2.1. Urban Water Budget
3.2.2. Groundwater Model
4. Discussion
4.1. Regional Scale Groundwater Model: Metro Detroit Watersheds
4.2. Local Scale Model: RecoveryPark
4.2.1. Urban Water Budget
4.2.2. Groundwater Model
4.3. Larger Impact on Southeast Michigan
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachmat, Y. Groundwater and aquifers. In Encyclopedia of Soils in the Environment, 1st ed.; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 2, pp. 153–168. [Google Scholar]
- Barcelona, M.J. Development and applications of groundwater remediation technologies in the USA. Hydrogeol. J. 2005, 13, 288–294. [Google Scholar] [CrossRef]
- Kavanaugh, M.C. Alternatives for Ground Water Cleanup, 2nd ed.; National Research Council, National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Luo, J.; Lu, W.; Yang, Q.; Ji, Y.; Xin, X. An adaptive dynamic surrogate model using a constrained trust region algorithm: Application to DNAPL-contaminated-groundwater-remediation design. Hydrogeol. J. 2020, 28, 1285–1298. [Google Scholar] [CrossRef]
- Howard, K.; Gerber, R. Impacts of urban areas and urban growth on groundwater in the Great Lakes Basin of North America. J. Great Lakes Res. 2018, 44, 1–13. [Google Scholar] [CrossRef]
- Rogers, D.T. Environmental Geology of Metropolitan Detroit; Clayton Environmental Consultants Inc.: Novi, MI, USA, 1996. [Google Scholar]
- Guo, Y.; Holton, C.; Luo, H.; Dahlen, P.; Johnson, P.C. Influence of Fluctuating Groundwater Table on Volatile Organic Chemical Emission Flux at a Dissolved Chlorinated-Solvent Plume Site. Ground Water Monit. Remediat. 2019, 39, 43–52. [Google Scholar] [CrossRef]
- Qi, S.; Luo, J.; O’Connor, D.; Cao, X.; Hou, D. Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone. J. Hydrol. 2020, 580, 124353. [Google Scholar] [CrossRef]
- Yu, L.; Rozemeijer, J.C.; Van Der Velde, Y.; van Breukelen, B.; Ouboter, M.; Broers, H.P. Urban hydrogeology: Transport routes and mixing of water and solutes in a groundwater influenced urban lowland catchment. Sci. Total Environ. 2019, 678, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health. Hydrogeol. J. 2016, 25, 1191–1217. [Google Scholar] [CrossRef]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Chatterjee, A.; Das, D.; Nayak, B.; Pal, A.; Chowdhury, U.K.; Ahmed, S.; Biswas, B.K.; et al. Groundwater arsenic contamination and its health effects in India. Hydrogeol. J. 2017, 25, 1165–1181. [Google Scholar] [CrossRef]
- Hill, M.K. Understanding Environmental Pollution, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Beckley, L.; McHugh, T. A conceptual model for vapor intrusion from groundwater through sewer lines. Sci. Total Environ. 2020, 698, 134283. [Google Scholar] [CrossRef]
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Burns, M.J. Stormwater infiltration and the ‘urban karst’—A review. J. Hydrol. 2017, 552, 141–150. [Google Scholar] [CrossRef]
- Çiçek, A.; Bakiş, R.; Uğurluoğlu, A.; Köse, E.; Tokatli, C. The Effects of Large Borate Deposits on Groundwater Quality. Polish J. Environ. Stud. 2013, 22, 1031–1037. [Google Scholar]
- Dumouchelle, D.; Cummings, T.; Klepper, G.R. Michigan Ground-Water Quality; US Geological Survey Open-File Report 87-0732; USGS: Denver, CO, USA, 1987.
- Goovaerts, P.; AvRuskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Katz, B.G.; Eberts, S.M.; Kauffman, L.J. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. J. Hydrol. 2011, 397, 151–166. [Google Scholar] [CrossRef]
- Kim, M.-J.; Nriagu, J.; Haack, S. Arsenic species and chemistry in groundwater of southeast Michigan. Environ. Pollut. 2002, 120, 379–390. [Google Scholar] [CrossRef]
- Thomas, M.A. The effect of residential development on ground-water quality near detroit, Michigan. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 1023–1038. [Google Scholar] [CrossRef]
- Miller, C.J.; Runge-Morris, M.; Cassidy-Bushrow, A.E.; Straughen, J.K.; Dittrich, T.M.; Baker, T.R.; Petriello, M.C.; Mor, G.; Ruden, D.M.; O’Leary, B.F.; et al. A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens. Int. J. Environ. Res. Public Health 2020, 17, 8755. [Google Scholar] [CrossRef]
- Cassidy-Bushrow, A.E.; Peters, R.M.; Johnson, D.A.; Templin, T.N. Association of depressive symptoms with inflammatory biomarkers among pregnant African-American women. J. Reprod. Immunol. 2012, 94, 202–209. [Google Scholar] [CrossRef]
- Forand, S.P.; Lewis-Michl, E.L.; Gomez, M.I. Adverse Birth Outcomes and Maternal Exposure to Trichloroethylene and Tetrachloroethylene through Soil Vapor Intrusion in New York State. Environ. Health Perspect. 2012, 120, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Herdt-Losavio, M.L.; Lin, S.; Druschel, C.M.; Hwang, S.-A.; Mauer, M.P.; Carlson, G.A. The Risk of Having a Low Birth Weight or Preterm Infant among Cosmetologists in New York State. Matern. Child Health J. 2008, 13, 90–97. [Google Scholar] [CrossRef]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef] [Green Version]
- MDHHS. Rate of Live Births by Age of Mother and Prematurity Classification Michigan 2018. Available online: http://www.mdch.state.mi.us/osr/chi/births14/frameBxChar.html (accessed on 25 July 2020).
- Stafford, K.; Tanner, K.; Guillen, J. As Mayor Mike Duggan Touts Make Your Date’s Success, Detroit’s Preterm Birth Rate Spikes. Available online: https://www.freep.com/story/news/investigations/2019/11/07/detroit-preterm-birth-rate-make-your-date/4156777002/ (accessed on 21 August 2020).
- Cassidy-Bushrow, A.E.; Burmeister, C.; Lamerato, L.; Lemke, L.D.; Mathieu, M.; O’Leary, B.F.; Sperone, F.G.; Straughen, J.K.; Reiners, J.J. Prenatal airshed pollutants and preterm birth in an observational birth cohort study in Detroit, Michigan, USA. Environ. Res. 2020, 189, 109845. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; USGS (United States Government Printing Office): Denver, CO, USA, 1988.
- Mozola, A.J. Geology for Land and Groundwater Development in Wayne County; State of Michigan Department of Natural Resources, Geology Survey: Lansing, MI, USA, 1969. [Google Scholar]
- Wisler, C.O.; Stramel, G.J.; Laird, L.B. Water Resources of the Detroit Area, Michigan; U.S. Department of the Interior: Washington, DC, USA, 1952; Volume 183.
- Howard, J.L. Quaternary Geology of the Detroit, Michigan Quadrangle and Surrounding Areas; Department of Geology, Wayne State University: Detroit, MI, USA, 2013. [Google Scholar]
- Leverett, F. Flowing Wells and Municipal Water Supplies on the Southern Portion of the Southern Peninsula of Michigan; USGS (United States Government Printing Office): Washington, DC, USA, 1906.
- Mozola, A.J. A Survey of Groundwater Resources in Oakland County, Michigan; Doctoral Dissertation, Syracuse University: Syracuse, NY, USA, December 1953. [Google Scholar]
- Henriette, C.V. Anna Kohn of RecoveryPark Talks Jobs, Opportunity and Impact. Available online: https://detroitisit.com/detroit-works-anna-kohn-of-recovery-park-jobs-impact-oppertunity/ (accessed on 25 July 2020).
- Hoard, C.J.; Haefner, R.J.; Shuster, W.D.; Pieschek, R.L.; Beeler, S. Full Water-Cycle Monitoring in an Urban Catchment Reveals Unexpected Water Transfers (Detroit MI, USA). JAWRA J. Am. Water Resour. Assoc. 2019, 56, 82–99. [Google Scholar] [CrossRef] [PubMed]
- USGS. National Water Information System Data Available on the World Wide Web (USGS Water Data for the Nation), United States Geological Survey. Available online: https://waterdata.usgs.gov/mi/nwis (accessed on 5 May 2020).
- Michigan Department of Natural Resources. DNR Open Data. Available online: https://gis-midnr.opendata.arcgis.com/search?collection=Dataset (accessed on 5 May 2020).
- Wellogic System. Department of Environmental Quality (DEQ), State of Michigan’s Statewide Groundwater Database. Available online: https://secure1.state.mi.us/wellogic/Login.aspx?ReturnUrl=%2fwellogic%2fdefault.aspx (accessed on 2 May 2020).
- Aquaveo. GMS: UGrid Module. Available online: https://www.xmswiki.com/wiki/GMS:UGrid_Module (accessed on 15 December 2019).
- EGLE. Michigan’s Major Watersheds. Available online: https://www.michigan.gov/egle/0,9429,7-135-3313_3684_3724---,00.html (accessed on 3 March 2020).
- Panday, S.; Langevin, C.D.; Niswonger, R.G.; Ibaraki, M.; Hughes, J.D. MODFLOW–USG Version 1: An Unstructured Grid Version of MODFLOW for Simulating Groundwater Flow and Tightly Coupled Processes Using a Control Volume Finite-Difference Formulation; 2328-7055; USGS: Reston, VA, USA, 2013.
- Howard, J.L.; Olszewska, D. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan. Environ. Pollut. 2011, 159, 754–761. [Google Scholar] [CrossRef]
- Pieschek, R.; Carpenter, D. Modeling green infrastructure in the support of the re-development of Detroit’s neighborhoods. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; pp. 247–254. [Google Scholar]
- Aichele, S.S. Ground-Water Quality Atlas of Oakland County, Michigan; Water-Resources Investigation 00-4120; USGS: Lansing, MI, USA, 2000.
- EGLE. Environmetal Mapper. Available online: https://www.mcgi.state.mi.us/environmentalmapper/# (accessed on 2 May 2020).
- Zhang, K.; Chui, T.F.M. A review on implementing infiltration-based green infrastructure in shallow groundwater environments: Challenges, approaches, and progress. J. Hydrol. 2019, 579. [Google Scholar] [CrossRef]
- Carpenter, D.D.; Pieschek, R.L.; Drummond, C.D. Documenting the Urban Water Cycle and Implications for Determining the Effectiveness of Transforming the Landscape with Green Stormwater Infrastructure. In Proceedings of the 10th Novatech Conferenace, Lyon, France, 1–5 July 2019. [Google Scholar]
- Grannemann, G.; Van Stempvoort, D. Groundwater Science Relevant to the Great Lakes Water Quality Agreement: A Status Report. Environment and Climate Change Canada and U.S. Environmental Protection Agency, May 2016. Available online: https://binational.net/2016/06/13/groundwater-science-f/ (accessed on 5 November 2020).
Stratigraphic Unit | Hydraulic Conductivity (m/day) |
---|---|
Moraine Unit | |
Sand Clay Unit | |
Sand Unit | |
Sandy and Silty Clay Unit | |
Clay Unit |
Dates | Start Time | Precipitation | Evapotranspiration | Sewer Data | Shallow Wells Online | Deeper Wells Online |
---|---|---|---|---|---|---|
27–31 October 2015 | 12:00 p.m. | Continuous 5-min data | Continuous 60-min data | Meter E, Meter F | 1 | 4 |
13–17 March 2016 | 12:00 a.m. | Meter E, Meter F | 14 | 8 | ||
10–14 May 2016 | 12:00 p.m. | Meter E, Meter F | 14 | 9 | ||
11–15 August 2016 | 12:00 a.m. | Meter E, Meter F | 4 | 8 |
Parameter | Values |
---|---|
Precipitation (m) 1 | 1.524 × 10−3 |
Horizontal hydraulic conductivity (m/d) (obtained after calibration process) | Zone 1: 1.818 × 10−3 |
Zone 2: 8.738 × 10−3 | |
Zone 3: 3.141 × 10−3 | |
Zone 4: 3.830 × 10−2 | |
Zone 5: 1.0 | |
Zone 6: 9.298 × 10−3 | |
Vertical hydraulic conductivity (m/d) in all zones (obtained after calibration process) | 0.5 |
Evapotranspiration rate (m/d) 1 | 4 × 10−6 |
Date | 27–31 October 2015 | 13–17 March 2016 | 10–14 May 2016 | 11–15 August 2016 |
---|---|---|---|---|
Units | m3 | m3 | m3 | m3 |
Precipitation | 9509.10 | 7859.12 | 4863.10 | 8032.80 |
Evapotranspiration | −39.97 | −62.74 | −85.15 | −97.65 |
Sewer Flow | −1370.63 | −2715.42 | −1561.84 | −2130.72 |
Change in Storage | −2188.24 | 8550.26 | 119.67 | −719.84 |
Excess | 5910.269 | 13,631.22 | 3335.781 | 5084.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teimoori, S.; O’Leary, B.F.; Miller, C.J. Modeling Shallow Urban Groundwater at Regional and Local Scales: A Case Study in Detroit, MI. Water 2021, 13, 1515. https://doi.org/10.3390/w13111515
Teimoori S, O’Leary BF, Miller CJ. Modeling Shallow Urban Groundwater at Regional and Local Scales: A Case Study in Detroit, MI. Water. 2021; 13(11):1515. https://doi.org/10.3390/w13111515
Chicago/Turabian StyleTeimoori, Sadaf, Brendan F. O’Leary, and Carol J. Miller. 2021. "Modeling Shallow Urban Groundwater at Regional and Local Scales: A Case Study in Detroit, MI" Water 13, no. 11: 1515. https://doi.org/10.3390/w13111515
APA StyleTeimoori, S., O’Leary, B. F., & Miller, C. J. (2021). Modeling Shallow Urban Groundwater at Regional and Local Scales: A Case Study in Detroit, MI. Water, 13(11), 1515. https://doi.org/10.3390/w13111515