Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regions and Storm Climatology
2.2. Annual Maxima Data and Covariates
3. Results
3.1. Model Selection
3.2. Posterior Inclusion Probability by Region
3.3. Model Performance at Stations within Region of Overlap
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958; ISBN 978-0-231-89131-8. [Google Scholar]
- Luke, A.; Vrugt, J.A.; AghaKouchak, A.; Matthew, R.; Sanders, B.F. Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States. Water Resour. Res. 2017, 53, 5469–5694. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Griffis, V.W. Flood Frequency Analysis in the United States: Time to Update. J. Hydrol. Eng. 2008, 13, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; AghaKouchak, A. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Sci. Rep. 2014, 4, 7093. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Kilsby, C.G. A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int. J. Clim. 2003, 23, 1313–1334. [Google Scholar] [CrossRef]
- Cooley, D.; Nychka, D.; Naveau, P. Bayesian Spatial Modeling of Extreme Precipitation Return Levels. J. Am. Stat. Assoc. 2007, 102, 824–840. [Google Scholar] [CrossRef]
- Gumbel, E.J. Probability-interpretation of the observed return-periods of floods. Eos Trans. Am. Geophys. Union 1941, 22, 836–850. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Davison, A.C.; Smith, R.L. Models for Exceedances Over High Thresholds. J. R. Stat. Soc. Ser. B (Methodol.) 1990, 52, 393–425. [Google Scholar] [CrossRef]
- Bonnin, G.; Martin, D.; Lin, B.; Parzybok, T.; Yekta, M.; Riley, D. Precipitation-Frequency Atlas of the United States: NOAA Atlas 14, Volume 1, Version 4; NOAA: Silver Spring, MD, USA, 2006. Available online: https://hdsc.nws.noaa.gov/hdsc/pfds/docs/NA14Vol1.pdf (accessed on 2 May 2017).
- England, J.F., Jr.; Cohn, T.A.; Faber, B.A.; Stedinger, J.R.; Thomas, W.O., Jr.; Veilleux, A.G.; Kiang, J.E.; Mason, R.R., Jr. Guidelines for determining flood flow frequency—Bulletin 17C. In Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2018; p. 168. [Google Scholar]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Some statistics useful in regional frequency analysis. Water Resour. Res. 1993, 29, 271–281. [Google Scholar] [CrossRef]
- Coles. An Introduction to Statistical Modeling of Extreme Values, Statistics; Springer: London, UK, 2001; ISBN 978-1-4471-3675-0. [Google Scholar]
- Davison, A.C.; Padoan, S.A.; Ribatet, M. Statistical Modeling of Spatial Extremes. Stat. Sci. 2012, 27, 161–186. [Google Scholar] [CrossRef] [Green Version]
- Papalexiou, S.M.; AghaKouchak, A.; Foufoula-Georgiou, E. A Diagnostic Framework for Understanding Climatology of Tails of Hourly Precipitation Extremes in the United States. Water Resour. Res. 2018, 54, 6725–6738. [Google Scholar] [CrossRef]
- Cooley, D. Extreme value analysis and the study of climate change. Clim. Chang. 2009, 97, 77. [Google Scholar] [CrossRef]
- Renard, B. A Bayesian hierarchical approach to regional frequency analysis. Water Resour. Res. 2011, 7, W11513. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data; Chapman and Hall/CRC: New York, NY, USA, 2014; ISBN 978-0-429-13717-4. [Google Scholar]
- Ribatet, M.; Cooley, D.; Davison, A.C. Bayesian inference from composite likelihoods, with an application to spatial extremes. Stat. Sin. 2012, 813–845. [Google Scholar]
- Wikle, C.K.; Berliner, L.M.; Cressie, N. Hierarchical Bayesian space-time models. Environ. Ecol. Stat. 1998, 5, 117–154. [Google Scholar] [CrossRef]
- Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing climate. Clim. Chang. 2014, 127, 353–369. [Google Scholar] [CrossRef]
- Economou, T.; Stephenson, D.B.; Ferro, C.A.T. Spatio-temporal modelling of extreme storms. Ann. Appl. Stat. 2014, 8, 2223–2246. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Palmer, R.; Steinschneider, S. A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States. Water Resour. Res. 2017, 53, 503–521. [Google Scholar] [CrossRef]
- Coles, S.G.; Tawn, J.A. A Bayesian Analysis of Extreme Rainfall Data. Appl. Stat. 1996, 45, 463. [Google Scholar] [CrossRef]
- Kwon, H.-H.; Brown, C.; Lall, U. Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophys. Res. Lett. 2008, 35, L05404. [Google Scholar] [CrossRef] [Green Version]
- Steinschneider, S.; Lall, U. A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports. Water Resour. Res. 2015, 51, 1472–1492. [Google Scholar] [CrossRef]
- Sang, H.; Gelfand, A.E. Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 2008, 16, 407–426. [Google Scholar] [CrossRef]
- Ghosh, S.; Mallick, B.K. A hierarchical Bayesian spatio-temporal model for extreme precipitation events. Environmetrics 2011, 22, 192–204. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H. Analysis of runoff extremes using spatial hierarchical Bayesian modeling. Water Resour. Res. 2013, 49, 6656–6670. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H. A hierarchical Bayesian approach for the analysis of climate change impact on runoff extremes. Hydrol. Process. 2014, 28, 6292–6308. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteor. 1994, 33, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.; Taylor, G.; Gibson, W. The PRISM approach to mapping precipitation and temperature. In Proceedings of the 10th Conference on Applied Climatology, Reno, NV, USA, 20–23 October 1997; pp. 10–12. [Google Scholar]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Clim. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Bracken, C.; Rajagopalan, B.; Cheng, L.; Kleiber, W.; Gangopadhyay, S. Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain. Water Resour. Res. 2016, 52, 6643–6655. [Google Scholar] [CrossRef] [Green Version]
- Lenkoski, A. spatial.gev.bma: Hierarchical Spatial Generalized Extreme Value (GEV) Modeling with Bayesian Model Averaging (BMA), (R package version 1.0) [Computer software manual]. 2014. [Google Scholar]
- Dyrrdal, A.V.; Lenkoski, A.; Thorarinsdottir, T.L.; Stordal, F. Bayesian hierarchical modeling of extreme hourly precipitation in Norway. Environmetrics 2014, 26, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H. Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems. Weather Forecast. 2000, 15, 559–570. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Am. Stat. Assoc. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Redmond, K.T.; Koch, R.W. Surface Climate and Streamflow Variability in the Western United States and Their Relationship to Large-Scale Circulation Indices. Water Resour. Res. 1991, 27, 2381–2399. [Google Scholar] [CrossRef]
- Lee, K.K.; Risley, J.C. Estimates for Ground-Water Recharge, Base Flow, and Stream Reach Gains and Losses in the Willamette River Basin, Oregon; USGS: Portland, OR, USA, 2002. [Google Scholar]
- Melack, J.M.; Dozier, J.; Goldman, C.R.; Greenland, D.; Milner, A.M.; Naiman, R.J. Effects of Climate Change on Inland Waters of the Pacific Coastal Mountains and Western Great Basin of North America. Hydrol. Process. 1997, 11, 971–992. [Google Scholar] [CrossRef] [Green Version]
- Mock, C.J. Climatic Controls and Spatial Variations of Precipitation in the Western United States. J. Clim. 1996, 9, 1111–1125. [Google Scholar] [CrossRef] [Green Version]
- Esri. “Terrain with Labels” [basemap]. “World Terrain Map”. 1 July 2009. Available online: https://server.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer (accessed on 10 April 2018).
- Bond, N.A.; Vecchi, G.A. The Influence of the Madden–Julian Oscillation on Precipitation in Oregon and Washington. Weather Forecast. 2003, 18, 600–613. [Google Scholar] [CrossRef]
- Harris, D.D.; Hubbard, L.E. Magnitude and Frequency of Floods in Eastern Oregon; United States Geological Survey, U.S. Department of the Interior: Portland, OR, USA, 1983.
- Schaefer, M.G.; Barker, B.L.; Taylor, G.H.; Wallis, J.R. Regional Precipitation-Frequency Analysis and Spatial Mapping of 24-Hour Precipitation for Oregon; Oregon Department of Transportation: Salem, OR, USA, 2008.
- Oki, T.; Musiake, K.; Koike, T. Spatial rainfall distribution at a storm event in mountainous regions, estimated by orography and wind direction. Water Resour. Res. 1991, 27, 359–369. [Google Scholar] [CrossRef]
- Javier, J.R.N.; Smith, J.A.; England, J.; Baeck, M.L.; Steiner, M.; Ntelekos, A.A. Climatology of extreme rainfall and flooding from orographic thunderstorm systems in the upper Arkansas River basin. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Zhao, W.; Khalil, M.a.K. The Relationship between Precipitation and Temperature over the Contiguous United States. J. Clim. 1993, 6, 1232–1236. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Adler, R.F.; Gu, G.; Wang, J.-J.; Huffman, G.J.; Curtis, S.; Bolvin, D. Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
Acronym | Model Covariates |
---|---|
XY | Longitude, Latitude |
XYZ | Lon., Lat., Elevation |
XYZPT1 | Lon., Lat., Elevation, PA |
XYZPT2 | Lon., Lat., Elevation, P *, Td *, T * |
XYZPT3 | Lon., Lat., Elevation, PA, TdA, TA |
XYZPT4 | Lon., Lat., Elevation, P *, Td *, T *, P c, Td c, T c |
XYZPT5 | Lon., Lat., Elevation, P1, …, P12, TdA, TA |
XYZPT6 | Lon., Lat., Elevation, P1, …, P12, Td1, …, Td12, T1, …, T12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Love, C.A.; Skahill, B.E.; England, J.F.; Karlovits, G.; Duren, A.; AghaKouchak, A. Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation. Water 2020, 12, 2211. https://doi.org/10.3390/w12082211
Love CA, Skahill BE, England JF, Karlovits G, Duren A, AghaKouchak A. Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation. Water. 2020; 12(8):2211. https://doi.org/10.3390/w12082211
Chicago/Turabian StyleLove, Charlotte A., Brian E. Skahill, John F. England, Gregory Karlovits, Angela Duren, and Amir AghaKouchak. 2020. "Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation" Water 12, no. 8: 2211. https://doi.org/10.3390/w12082211
APA StyleLove, C. A., Skahill, B. E., England, J. F., Karlovits, G., Duren, A., & AghaKouchak, A. (2020). Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation. Water, 12(8), 2211. https://doi.org/10.3390/w12082211