Flow Prediction Using Remotely Sensed Soil Moisture in Irish Catchments
Abstract
:1. Introduction
2. Data and Methodology
2.1. SMART Model
2.2. Study Catchments
2.3. Meteorological Data
2.4. Discharge
2.5. Soil Moisture
2.6. Experimental Design and Hypothesis Testing
- (1)
- Calibration using only remotely sensed soil moisture would perform worse than calibrating to discharge data.
- (2)
- Remote sensed soil moisture will only be able to provide small benefits to simulate discharge in ungauged basins, especially in the case of Ireland.
- (3)
- A clear relationship between catchment size and model perform will be exhibited when using the R2 BPS.
3. Results
- Calibration using Nash Sutcliffe Efficiency (NSE) and validated using NSE
- Calibration using NSE and validated using R2
- Calibration using R2 and validated using R2
- Calibration using R2 and validated using NSE
3.1. Calibration by Nash Sutcliffe Efficiency (NSE)
3.2. Calibration by R2
4. Discussion
4.1. Hydrograph Comparison
4.2. Hypothesis Tests
4.3. Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivapalan, M. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Process. 2003, 17, 3163–3170. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. IAHS Publ. 2007, 309, 129–136. [Google Scholar]
- Shiklomanov, A.; Lammers, R.B.; Vörösmarty, C.J. Widespread decline in hydrological monitoring threatens Pan-Arctic Research. Eos Trans. Am. Geophys. Union 2002, 83, 13. [Google Scholar] [CrossRef]
- Becker, M.; Da Silva, J.S.; Calmant, S.; Robinet, V.; Linguet, L.; Seyler, F. Water level fluctuations in the congo basin derived from ENVISAT satellite altimetry. Remote. Sens. 2014, 6, 9340–9358. [Google Scholar] [CrossRef] [Green Version]
- O’Loughlin, F.; Neal, J.; Yamazaki, D.; Bates, P.D. ICESat-derived inland water surface spot heights. Water Resour. Res. 2016, 52, 3276–3284. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Massari, C.; Brocca, L.; Moramarco, T.; Tramblay, Y.; Lescot, J.-F.D. Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall. Adv. Water Resour. 2014, 74, 44–53. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.-F.; Todorovik, D.; Domergue, J.-M. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. J. Hydrol. 2010, 387, 176–187. [Google Scholar] [CrossRef]
- Wooldridge, S.; Kalma, J.; Walker, J. Importance of soil moisture measurements for inferring parameters in hydrologic models of low-yielding ephemeral catchments. Environ. Model. Softw. 2003, 18, 35–48. [Google Scholar] [CrossRef]
- Koren, V.; Moreda, F.; Smith, M. Use of soil moisture observations to improve parameter consistency in watershed calibration. Phys. Chem. Earth Parts A/B/C 2008, 33, 1068–1080. [Google Scholar] [CrossRef]
- Matgen, P.; Fenicia, F.; Heitz, S.; Plaza, D.; De Keyser, R.; Pauwels, V.R.N.; Wagner, W.; Savenije, H. Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application. Adv. Water Resour. 2012, 44, 49–65. [Google Scholar] [CrossRef]
- Aubert, D.; Loumagne, C.; Oudin, L. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model. J. Hydrol. 2003, 280, 145–161. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Starks, P.J.; Moriasi, D.N. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Adv. Water Resour. 2011, 34, 526–536. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A. Evaluation of soil moisture downscaling using a simple thermal-based proxy REMEDHUS network (Spain) example. Hydrol. Earth Syst. Sci. 2015, 19, 4765–4782. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A/B/C 2015, 83, 36–56. [Google Scholar] [CrossRef]
- Loew, A.; Ludwig, R.; Mauser, W. Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas. IEEE Trans. Geosci. Remote Sens. 2006, 44, 889–899. [Google Scholar] [CrossRef]
- Njoku, E.; Jackson, T.J.; Lakshmi, V.; Chan, T.; Nghiem, S. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.-C.; Bizzarri, B.; Wigneron, J.-P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Owe, M.; De Jeu, R.; Holmes, T.R. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Kerr, Y.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; Van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Dorigo, W.; De Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 7, 315–321. [Google Scholar]
- Dorigo, W.; Gruber, A.; De Jeu, R.; Wagner, W.; Stacke, T.; Loew, A.; Calvet, J.-C.; Brocca, L.; Chung, D.; Parinussa, R.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Albergel, C.; De Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1530–1543. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over southwest China using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, N.; Perez-Gutierrez, C.; Martinez-Fernandez, J.; Scaini, A. Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Parajka, J.; Naeimi, V.; Blöschl, G.; Komma, J. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrol. Earth Syst. Sci. 2009, 13, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; De Rosnay, P.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.; et al. A review of the applications of ASCAT soil moisture products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2285–2306. [Google Scholar] [CrossRef]
- Moran, M.S.; Doorn, B.; Escobar, V.; Brown, M.E. Connecting NASA science and engineering with earth science applications. J. Hydrometeorol. 2015, 16, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L.; George, B. The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. J. Hydrol. 2016, 535, 509–524. [Google Scholar] [CrossRef]
- Sutanudjaja, E.H.; Van Beek, L.P.H.; De Jong, S.; Van Geer, F.C.; Bierkens, M.F.P. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data. Water Resour. Res. 2014, 50, 687–705. [Google Scholar] [CrossRef]
- Silvestro, F.; Gabellani, S.; Rudari, R.; Delogu, F.; Laiolo, P.; Boni, G. Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 1727–1751. [Google Scholar] [CrossRef] [Green Version]
- Rajib, A.; Merwade, V.; Yu, Z. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 2016, 536, 192–207. [Google Scholar] [CrossRef] [Green Version]
- Kundu, D.; Vervoort, R.W.; Van Ogtrop, F. The value of remotely sensed surface soil moisture for model calibration using SWAT. Hydrol. Process. 2017, 31, 2764–2780. [Google Scholar] [CrossRef]
- Tebbs, E.; Gerard, F.; Petrie, A.; De Witte, E. Emerging and potential future applications of satellite-based soil moisture products. In Satellite Soil Moisture Retrieval; Petropoulos, G.P., Srivastava, P., Kerr, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 19, pp. 379–400. [Google Scholar]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Zhan, X. Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resour. Res. 2019, 55, 324–344. [Google Scholar] [CrossRef] [Green Version]
- Piles, M.; Sanchez, N.; Vall-Llossera, M.; Camps, A.; Martinez-Fernandez, J.; Martinez, J.; González-Gambau, V. A downscaling approach for SMOS land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3845–3857. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci. 2014, 18, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.A.; Hansen, E. Numerical simulation of the rainfall-runoff process on a daily basis. Hydrol. Res. 1973, 4, 171–190. [Google Scholar] [CrossRef]
- Mockler, E.M.; O’Loughlin, F.E.; Bruen, M. Understanding hydrological flow paths in conceptual catchment models using uncertainty and sensitivity analysis. Comput. Geosci. 2016, 90, 66–77. [Google Scholar] [CrossRef]
- Hallouin, T.; Bruen, M.; O’Loughlin, F.E.; Fiachra, E. Calibration of hydrological models for ecologically relevant streamflow predictions: A trade-off between fitting well to data and estimating consistent parameter sets? Hydrol. Earth Syst. Sci. 2020, 24, 1031–1054. [Google Scholar] [CrossRef] [Green Version]
- O’Loughlin, F.; Bruen, M.; Wagener, T. Parameter sensitivity of a watershed-scale flood forecasting model as a function of modelling time-step. Hydrol. Res. 2012, 44, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W. Soil Moisture Retrieval from ERS Scatterometer Data; Vienna University of Technology: Vienna, Austria, 1998. [Google Scholar]
- Bartalis, Z.; Naeimi, V.; Hasenauer, S.; Wagner, W. ASCAT Soil Moisture Product Handbook; ASCAT Soil Moisture Report Series; Institute of Photogrammetry and Remote Sensing, Vienna University of Technology: Vienna, Austria, 2008. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models-part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Li, Y.; Grimaldi, S.; Pauwels, V.R.N.; Walker, J.P. Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. J. Hydrol. 2018, 557, 897–909. [Google Scholar] [CrossRef]
Parameter | Description | Range |
---|---|---|
T | Areal Rainfall Correction coefficient (/) | 0.9–1.1 |
C | Evaporation decay parameter (/) | 0–1 |
H | Quick runoff coefficient (/) | 0–0.3 |
S | Drain flow parameter (/) | 0–1 |
D | Soil outflow coefficient (/) | 0–0.013 |
Z | Effective soil depth (mm) | 15–150 |
SK | Surface routing parameter (hours) | 1–240 |
FK | Interflow routing parameter (hours) | 48–1440 |
GK | Groundwater routing parameter (hours) | 1200–4800 |
RK | River routing parameter (hours) | 1–96 |
Catchment Name | Gauged Area (km2) | Synoptic Station Name | Discharge Gauge Number | Discharge Gauge Name |
---|---|---|---|---|
Barrow | 2433 | Casement | 14,018 | Royal Oak |
Blackwater | 2315 | Cork Airport | 18,002 | Ballyduff |
Boyne | 2467 | Dublin Airport | 7012 | Slane Castle |
Dee | 305 | Dublin Airport | 6013 | Charleville |
Feale | 648 | Valentia Observatory | 23,002 | Listowel |
Moy | 1908 | Belmullet | 34,001 | Rahans (Goswami and O’Connor) |
Nore | 2380 | Casement | 15,006 | Brownsbarn |
Suck | 1215 | Shannon Airport | 26,007 | Bellagill |
Suir | 1565 | Shannon Airport | 16,009 | Cahir Park |
NSE Calibration (Validation) | R2 Calibration (Validation) | |||||
---|---|---|---|---|---|---|
Boyne | Barrow | Nore | Boyne | Barrow | Nore | |
Mean | 0.792 (0.824) | 0.83 (0.842) | 0.812 (0.806) | 0.627 (0.472) | 0.591 (0.452) | 0.585 (0.464) |
Standard Deviation | 0.025 (0.028) | 0.023 (0.03) | 0.028 (0.03) | 0.029 (0.042) | 0.038 (0.045) | 0.038 (0.043) |
Max | 0.882 (0.911) | 0.92 (0.929) | 0.906 (0.898) | 0.674 (0.578) | 0.656 (0.552) | 0.654 (0.556) |
Blackwater | Moy | Suir | Blackwater | Moy | Suir | |
Mean | 0.838 (0.811) | 0.896 (0.91) | 0.861 (0.848) | 0.595 (0.404) | 0.607 (0.434) | 0.627 (0.444) |
Standard Deviation | 0.024 (0.041) | 0.013 (0.019) | 0.022 (0.03) | 0.034 (0.039) | 0.035 (0.03) | 0.034 (0.041) |
Max | 0.906 (0.914) | 0.939 (0.952) | 0.94 (0.912) | 0.663 (0.49) | 0.66 (0.51) | 0.68 (0.513) |
Suck | Feale | Dee | Suck | Feale | Dee | |
Mean | 0.903 (0.915) | 0.614 (0.593) | 0.788 (0.829) | 0.629 (0.447) | 0.569 (0.365) | 0.611 (0.47) |
Standard Deviation | 0.016 (0.018) | 0.064 (0.072) | 0.029 (0.033) | 0.045 (0.042) | 0.049 (0.024) | 0.026 (0.033) |
Max | 0.943 (0.95) | 0.809 (0.817) | 0.88 (0.917) | 0.698 (0.546) | 0.667 (0.438) | 0.668 (0.554) |
NSE Calibration (Validation) | R2 Calibration (Validation) | |||||
---|---|---|---|---|---|---|
Boyne | Barrow | Nore | Boyne | Barrow | Nore | |
Mean | 0.650 (0.661) | 0.679 (0.676) | 0.661 (0.634) | 0.661 (0.521) | 0.639 (0.504) | 0.634 (0.513) |
Standard Deviation | 0.138 (0.150) | 0.172 (0.177) | 0.132 (0.146) | 0.005 (0.017) | 0.006 (0.016) | 0.007 (0.014) |
Max | 0.882 (0.885) | 0.92 (0.928) | 0.906 (0.885) | 0.679 (0.588) | 0.662 (0.561) | 0.661 (0.564) |
Blackwater | Moy | Suir | Blackwater | Moy | Suir | |
Mean | 0.683 (0.655) | 0.691 (0.73) | 0.743 (0.732) | 0.64 (0.459) | 0.656 (0.485) | 0.66 (0.487) |
Standard Deviation | 0.115 (0.12) | 0.135 (0.135) | 0.133 (0.128) | 0.007 (0.01) | 0.006 (0.015) | 0.004 (0.007) |
Max | 0.901 (0.9) | 0.922 (0.943) | 0.94 (0.912) | 0.672 (0.49) | 0.682 (0.548) | 0.68 (0.513) |
Suck | Feale | Dee | Suck | Feale | Dee | |
Mean | 0.651 (0.637) | 0.297 (0.268) | 0.614 (0.627) | 0.692 (0.515) | 0.651 (0.402) | 0.645 (0.507) |
Standard Deviation | 0.161 (0.166) | 0.119 (0.119) | 0.15 (0.163) | 0.005 (0.012) | 0.006 (0.016) | 0.007 (0.015) |
Max | 0.925 (0.939) | 0.717 (0.717) | 0.88 (0.915) | 0.712 (0.551) | 0.678 (0.457) | 0.674 (0.561) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; O’Loughlin, F.E. Flow Prediction Using Remotely Sensed Soil Moisture in Irish Catchments. Water 2020, 12, 2202. https://doi.org/10.3390/w12082202
Yang C, O’Loughlin FE. Flow Prediction Using Remotely Sensed Soil Moisture in Irish Catchments. Water. 2020; 12(8):2202. https://doi.org/10.3390/w12082202
Chicago/Turabian StyleYang, Chanyu, and Fiachra E. O’Loughlin. 2020. "Flow Prediction Using Remotely Sensed Soil Moisture in Irish Catchments" Water 12, no. 8: 2202. https://doi.org/10.3390/w12082202
APA StyleYang, C., & O’Loughlin, F. E. (2020). Flow Prediction Using Remotely Sensed Soil Moisture in Irish Catchments. Water, 12(8), 2202. https://doi.org/10.3390/w12082202