Event-Based Rainfall Interception Modeling in a Cerrado Riparian Forest—Central Brazil: An Alternative Approach to the IS Method for Parameterization of the Gash Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Collection
2.2. The Gash Analytical Model
2.3. Model Parameterization—IS Linear Regression
2.4. Gash Model Parameterization—Image-Based and Particle Swarm Optimization—PSO
3. Results
3.1. Sample Variability, Overall Throughfall, and Interception Behavior
3.2. Event-Based Canopy Characterization and Gash Model Application
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Véliz-Chávez, C.; Mastachi-Loza, C.A.; González-Sosa, E.; Becerril-Piña, R.; Ramos-Salinas, N.M. Canopy Storage Implications on Interception Loss Modeling. Am. J. Plant Sci. 2014, 5, 3032–3048. [Google Scholar] [CrossRef] [Green Version]
- Helvey, J.D.; Patric, J.H. Design criteria for interception studies. Hydrol. Sci. Bull. Int. Assoc. Hydrol. Sci. 1966, 67, 131–137. [Google Scholar]
- Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 2006, 319, 72–82. [Google Scholar] [CrossRef]
- Kavian, A.; Alipour, A.; Soleimani, K.; Gholami, L.; Smith, P.; Rodrigo-Comino, J. The increase of rainfall erosivity and initial soil erosion processes due to rainfall acidification. Hydrol. Process. 2019, 33, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Angulo-Martínez, M.; Gaspar, L.; Navas, A. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain. Geoderma 2015, 245–246, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 1971, 9, 367–384. [Google Scholar] [CrossRef]
- Gash, J.H.C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Link, T.E.; Unsworth, M.; Marks, D. The dynamics of rainfall interception by a seasonal temperate rainforest. Agric. For. Meteorol. 2004, 124, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Pypker, T.G.; Bond, B.J.; Link, T.E.; Marks, D.; Unsworth, M.H. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agric. For. Meteorol. 2005, 130, 113–129. [Google Scholar] [CrossRef]
- Brutsaert, W. Hydrology: An Introduction, 5th ed.; Cambridge University Press: Cambridge, UK, 2010; ISBN 0521824796. [Google Scholar]
- MMA—Ministry of Environment O Bioma Cerrado. Available online: http://www.mma.gov.br/biomas/cerrado (accessed on 16 May 2016).
- Giglio, J.N.; Kobiyama, M. Interceptação da Chuva: Uma Revisão com Ênfase no Monitoramento em Florestas Brasileiras. RBRH-Rev. Bras. Recur. Hídricos 2013, 18, 297–317. [Google Scholar] [CrossRef]
- Zimmermann, A.; Zimmermann, B.; Elsenbeer, H. Rainfall redistribution in a tropical forest: Spatial and temporal patterns. Water Resour. Res. 2009, 45, 1–18. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, M.C.; Felfili, J.M.; da Silva Júnior, M.C. Análise florística e fitossociológica da comunidade arbórea da Mata de Galeria do Capetinga, após vinte anos de passagem de fogo, na Fazenda Água Limpa, Brasília—DF. Heringeriana 2011, 5, 19–31. [Google Scholar]
- Seabra, H.F.; Encinas, J.M.; Felfili, J.M. Análise estrutural da mata ciliar do Córrego Capetinga—DF, habitat de Callithrix jacchus penicillata. Pesqui. Agropecuária Bras. 1991, 26, 11–17. [Google Scholar]
- Crockford, R.H.; Richardson, D.P. Partitioning of rainfall into throughfall, stemslow∠d interception effect of forest type, ground cover and climate. Hydrol. Process. 2000, 14, 2903–2920. [Google Scholar] [CrossRef]
- Lloyd, C.R.; Gash, J.H.C.; Shuttleworth, W.J. The measurement and modelling of rainfall interception by Amazonian rain forest. Agric. For. Meteorol. 1988, 43, 277–294. [Google Scholar] [CrossRef]
- Marin, C.T.; Bouten, W.; Sevink, J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J. Hydrol. 2000, 237, 40–57. [Google Scholar] [CrossRef]
- Zimmermann, B.; Zimmermann, A.; Elsenbeer, H. Sampling procedures for throughfall monitoring: A simulation study. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kimmins, J.P. Some Statistical Aspects of Sampling Throughfall Precipitation in Nutrient Cycling Studies in British Columbian Coastal Forests. Ecology 1973, 54, 1008–1019. [Google Scholar] [CrossRef]
- Gash, J.H.; Lloyd, C.R.; Lachaud, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170, 79–86. [Google Scholar] [CrossRef]
- Chen, S.; Chen, C.; Zou, C.B.; Stebler, E.; Zhang, S.; Hou, L.; Wang, D. Application of Gash analytical model and parameterized Fan model to estimate canopy interception of a Chinese red pine forest. J. For. Res. 2013, 18, 335–344. [Google Scholar] [CrossRef]
- Frazer, G.; Canham, C.; Lertzman, K. Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Program 1999, 36. [Google Scholar]
- Zambrano-Bigiarini, M.; Rojas, R. Particle Swarm Optimisation, with Focus on Environmental Models. R Package Version 0.3-4 2013. [Google Scholar] [CrossRef]
- Jackson, I.J. Problems of throughfall and interception assessment under tropical forest. J. Hydrol. 1971, 12, 234–254. [Google Scholar] [CrossRef]
- Vieira, C.P.; Palmier, L.R. Medida e Modelagem da Interceptação da Chuva em uma Área Florestada na Região Metropolitana de Belo Horizonte, Minas Gerais. Rev. Bras. Recur. Hídricos 2006, 11, 101–112. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A.; Scott, R.L.; Rosolem, R.; Da Rocha, H.R. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol. Earth Syst. Sci. 2015, 19, 2899–2910. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.; da Assunção, H.F.; Scopel, I. Partição Pluviométrica Em Fitofisionomias Do Cerrado. Mercator 2013, 12, 135–147. [Google Scholar] [CrossRef]
- Germer, S.; Elsenbeer, H.; Moraes, J.M. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil). Hydrol. Earth Syst. Sci. Discuss. 2005, 2, 2707–2738. [Google Scholar] [CrossRef] [Green Version]
- Cuartas, L.A.; Tomasella, J.; Nobre, A.D.; Hodnett, M.G.; Waterloo, M.J.; Múnera, J.C. Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 2007, 145, 69–83. [Google Scholar] [CrossRef]
- Dunkerley, D.L. Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview. J. Hydrol. 2009, 376, 599–604. [Google Scholar] [CrossRef]
Observed Data | IS Method Adjusted Coefficient Statistics | |||||
---|---|---|---|---|---|---|
Event | Precipitation (mm) | Throughfall (mm) | ρ | Lower CI | Upper CI | p-Value |
1 | 24.38 | 16.28 | 0.21 | 0.04 | 0.38 | 2.99 × 10−2 |
2 | 27.94 | 18.94 | 0.25 | 0.19 | 0.31 | 1.90 × 10−5 |
3 | 13.21 | 8.7 | 0.12 | 0.04 | 0.2 | 1.29 × 10−2 |
4 | 12.45 | 5.54 | 0.08 | 0.03 | 0.14 | 6.59 × 10−3 |
5 | 16 | 13.58 | 0.5 | 0.34 | 0.67 | 2.40 × 10−3 |
6 | 10.16 | 7.78 | 0.35 | 0.23 | 0.47 | 2.50 × 10−3 |
7 | 24.13 | 21.4 | NA | NA | NA | NA |
8 | 6.6 | 4.9 | 0.11 | −0.02 | 0.23 | 8.16 × 10−2 |
9 | 4.83 | 3.55 | 0.51 | 0.39 | 0.63 | 8.91 × 10−4 |
10 | 18.8 | 16.03 | 0.44 | 0.35 | 0.53 | 2.48 × 10−7 |
11 | 43.69 | 40.46 | NA | NA | NA | NA |
12 | 4.32 | 1.82 | 0.36 | 0.21 | 0.52 | 6.13 × 10−4 |
13 | 21.59 | 18.16 | NA | NA | NA | NA |
14 | 10.16 | 6.8 | 0.38 | 0.26 | 0.49 | 7.17 × 10−4 |
15 | 6.35 | 4.8 | NA | NA | NA | NA |
16 | 16.26 | 11.8 | 0.22 | 0.21 | 0.23 | 2.20 × 10−16 |
17 | 19.3 | 17 | NA | NA | NA | NA |
18 | 4.57 | 2.6 | 0.46 | 0.38 | 0.54 | 9.00 × 10−5 |
19 | 8.89 | 6.55 | NA | NA | NA | NA |
20 | 17.27 | 12.53 | 0.3 | 0.13 | 0.47 | 1.09 × 10−2 |
21 | 33.78 | 30.47 | 0.56 | 0.53 | 0.59 | 2.20 × 10−16 |
22 | 16.76 | 12.94 | NA | NA | NA | NA |
23 | 15.24 | 9.55 | 0.16 | 0.11 | 0.2 | 1.58 × 10−5 |
24 | 13.56 | 10.16 | 0.44 | 0.41 | 0.47 | 2.27 × 10−9 |
25 | 12.19 | 7.67 | 0.27 | 0.14 | 0.39 | 6.43 × 10−3 |
26 | 10.67 | 7.38 | 0.22 | 0.11 | 0.33 | 7.84 × 10−3 |
27 | 9.65 | 6.6 | 0.17 | 0.05 | 0.29 | 2.16 × 10−2 |
28 | 23.88 | 21.63 | 0.41 | 0.37 | 0.45 | 2.20 × 10−16 |
29 | 6.35 | 3.53 | NA | NA | NA | NA |
30 | 8.13 | 5.78 | 0.23 | 0.21 | 0.26 | 2.20 × 10−16 |
31 | 13.72 | 9.3 | 0.31 | 0.21 | 0.4 | 2.25 × 10−5 |
32 | 115.57 | 93.7 | 0.45 | 0.41 | 0.48 | 2.20 × 10−16 |
33 | 14.99 | 13.08 | 0.48 | 0.34 | 0.61 | 4.08 × 10−3 |
34 | 8.64 | 4.6 | 0.23 | 0.15 | 0.31 | 1.27 × 10−3 |
35 | 6.35 | 4 | 0.47 | 0.44 | 0.5 | 2.20 × 10−16 |
Observed Data | Individual Storm—IS | Particle Swarm Optimization—PSO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Event | Precipitation (mm) | Throughfall (mm) | S (mm) | P′G (mm) | E/R | Nash | S (mm) | P′G (mm) | E/R | Nash | ||
1 | 24.38 | 16.28 | 0.21 | 2.72 | 3.23 | 0.26 | 0.92 | 0.16 | 2.46 | 2.93 | 0.25 | 0.93 |
2 | 27.94 | 18.94 | 0.25 | 1.16 | 1.45 | 0.29 | 0.95 | 0.18 | 1.47 | 1.79 | 0.27 | 0.97 |
3 | 13.21 | 8.7 | 0.12 | 2.48 | 2.74 | 0.19 | 0.9 | 0.16 | 2.4 | 2.86 | 0.16 | 0.87 |
4 | 12.45 | 5.54 | 0.08 | 1.52 | 1.61 | 0.49 | 0.8 | 0.16 | 1.37 | 1.63 | 0.48 | 0.72 |
5 | 16 | 13.58 | 0.5 | 2.25 | 3.53 | −0.03 | 0.97 | 0.2 | 2.39 | 2.97 | 0.01 | 0.98 |
6 | 10.16 | 7.78 | 0.35 | 2.35 | 3.39 | −0.01 | 0.95 | 0.2 | 2.41 | 3 | 0.05 | 0.96 |
7 | 24.13 | 21.4 | NA | NA | NA | NA | NA | 0.16 | 1.25 | 1.5 | 0.11 | 0.97 |
8 | 6.6 | 4.9 | 0.11 | 0.45 | 0.5 | 0.22 | 0.96 | 0.17 | 0.53 | 0.64 | 0.25 | 0.96 |
9 | 4.83 | 3.55 | 0.51 | 1.01 | 2.06 | 0.06 | 0.94 | 0.17 | 0.37 | 0.44 | 0.18 | 0.86 |
10 | 18.8 | 16.03 | 0.44 | 1.68 | 2.74 | 0.07 | 0.86 | 0.16 | 0.92 | 1.1 | 0.13 | 0.89 |
11 | 43.69 | 40.46 | NA | NA | NA | NA | NA | 0.18 | 0.63 | 0.76 | 0.01 | 0.97 |
12 | 4.32 | 1.82 | 0.36 | 0.97 | 1.39 | 0.52 | 0.94 | 0.19 | 0.85 | 1.05 | 0.55 | 0.95 |
13 | 21.59 | 18.16 | NA | NA | NA | NA | NA | 0.2 | 0.23 | 0.29 | 0.14 | 0.91 |
14 | 10.16 | 6.8 | 0.38 | 1.19 | 1.69 | 0.2 | 0.84 | 0.2 | 0.76 | 0.94 | 0.23 | 0.87 |
15 | 6.35 | 4.8 | NA | NA | NA | NA | NA | 0.18 | 0.06 | 0.08 | 0.26 | 0.98 |
16 | 16.26 | 11.8 | 0.22 | 0.8 | 0.94 | 0.24 | 0.92 | 0.16 | 0.85 | 1.01 | 0.2 | 0.91 |
17 | 19.3 | 17 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
18 | 4.57 | 2.6 | 0.46 | 1.45 | 2.78 | 0.22 | 0.88 | NA | NA | NA | NA | NA |
19 | 8.89 | 6.55 | NA | NA | NA | NA | NA | 0.16 | 1.31 | 1.56 | 0.11 | 0.94 |
20 | 17.27 | 12.53 | 0.3 | 2.43 | 3.32 | 0.16 | 0.99 | 0.19 | 2.42 | 2.98 | 0.16 | 0.99 |
21 | 33.78 | 30.47 | 0.56 | 2.33 | 5.14 | 0.04 | 0.94 | 0.16 | 2.28 | 2.72 | 0.04 | 0.91 |
22 | 16.76 | 12.94 | NA | NA | NA | NA | NA | 0.2 | 0.82 | 1.02 | 0.18 | 0.94 |
23 | 15.24 | 9.55 | 0.16 | 2.63 | 3 | 0.26 | 0.89 | 0.17 | 2.09 | 2.52 | 0.35 | 0.88 |
24 | 13.56 | 10.16 | 0.44 | 2.6 | 4.45 | 0.04 | 0.95 | 0.16 | 1.92 | 2.29 | 0.18 | 0.97 |
25 | 12.19 | 7.67 | 0.27 | 4.11 | 5.31 | 0.04 | 0.94 | 0.16 | 2.51 | 3 | 0.19 | 0.95 |
26 | 10.67 | 7.38 | 0.22 | 2.1 | 2.56 | 0.14 | 0.93 | 0.16 | 1.48 | 1.77 | 0.24 | 0.95 |
27 | 9.65 | 6.6 | 0.17 | 1.24 | 1.46 | 0.21 | 0.85 | 0.17 | 1.31 | 1.58 | 0.21 | 0.90 |
28 | 23.88 | 21.63 | 0.41 | 0.82 | 1.26 | 0.06 | 0.93 | 0.16 | 1.47 | 1.76 | 0.08 | 0.94 |
29 | 6.35 | 3.53 | NA | NA | NA | NA | NA | 0.16 | 0.38 | 0.46 | 0.42 | 0.69 |
30 | 8.13 | 5.78 | 0.23 | 1.66 | 1.95 | 0.06 | 0.81 | 0.19 | 1.41 | 1.73 | 0.11 | 0.80 |
31 | 13.72 | 9.3 | 0.31 | 1.52 | 2.1 | 0.21 | 0.78 | 0.17 | 1.07 | 1.29 | 0.27 | 0.80 |
32 | 115.57 | 93.7 | 0.45 | 1.79 | 3.02 | 0.17 | 0.98 | 0.2 | 1.48 | 1.84 | 0.18 | 0.98 |
33 | 14.99 | 13.08 | 0.48 | 1.98 | 3.36 | 0 | 0.89 | 0.18 | 1.24 | 1.5 | 0.09 | 0.90 |
34 | 8.64 | 4.6 | 0.23 | 1.52 | 1.87 | 0.36 | 0.93 | 0.16 | 1.28 | 1.53 | 0.41 | 0.97 |
35 | 6.35 | 4 | 0.47 | 1.82 | 3.61 | 0.2 | 0.99 | 0.2 | 1.92 | 2.39 | 0.21 | 0.98 |
Parameters | t-Value | df | p-Value | Mean of the Differences |
---|---|---|---|---|
5.412 | 25 | 1.29 × 10−5 | 0.142 | |
S | 2.864 | 25 | 8.34 × 10−3 | 0.249 |
P′G | 4.269 | 25 | 2.48 × 10−4 | 0.708 |
E/R | −3.941 | 25 | 5.77 × 10−4 | −0.040 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Távora, B.E.; Koide, S. Event-Based Rainfall Interception Modeling in a Cerrado Riparian Forest—Central Brazil: An Alternative Approach to the IS Method for Parameterization of the Gash Model. Water 2020, 12, 2128. https://doi.org/10.3390/w12082128
Távora BE, Koide S. Event-Based Rainfall Interception Modeling in a Cerrado Riparian Forest—Central Brazil: An Alternative Approach to the IS Method for Parameterization of the Gash Model. Water. 2020; 12(8):2128. https://doi.org/10.3390/w12082128
Chicago/Turabian StyleTávora, Bruno Esteves, and Sérgio Koide. 2020. "Event-Based Rainfall Interception Modeling in a Cerrado Riparian Forest—Central Brazil: An Alternative Approach to the IS Method for Parameterization of the Gash Model" Water 12, no. 8: 2128. https://doi.org/10.3390/w12082128
APA StyleTávora, B. E., & Koide, S. (2020). Event-Based Rainfall Interception Modeling in a Cerrado Riparian Forest—Central Brazil: An Alternative Approach to the IS Method for Parameterization of the Gash Model. Water, 12(8), 2128. https://doi.org/10.3390/w12082128