Comparison of Uranium Isotopes and Classical Geochemical Tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation
2.3. Physiochemical and Chemical Sample Analyses
2.3.1. Rock Samples
2.3.2. Water Samples and Thermodynamic Modelling
2.4. U and Th Sample Analysis
2.4.1. U and Th Concentration Measurements
2.4.2. U Isotope Measurements
3. Results
3.1. Bedrock Composition of Ljubljanica River Catchment
3.2. Water Composition of Ljubljanica River Catchment
Concentration and Isotopic Composition of U in Water
4. Discussion
4.1. Bedrock Weathering
4.2. U and Th Isotopes in Bedrock
4.3. U Isotopes in Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, Z. Global distribution and use of water from karst aquifers. Geol. Soc. Lond. Spec. Publ. 2018, 466, 217–236. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- White, W.B. Karst hydrology: Recent developments and open questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Ravbar, N.; Petrič, M.; Kogovšek, J. The characteristics of groundwater flow in karst aquifers during long lasting low flow conditions, example from SW Slovenia. In Advances in Research in Karst Media. Environmental Earth Sciences; Andreo, B., Carrasco, F., Durán, J., LaMoreaux, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–136. [Google Scholar] [CrossRef]
- Sappa, G.; Vitale, S.; Ferranti, F. Identifying karst aquifer recharge areas using environmental isotopes: A case study in Central Italy. Geosciences 2018, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- Calligaris, C.; Mezga, K.; Slejko, F.; Urbanc, J.; Zini, L. Groundwater characterization by means of conservative (δ18O and δ2H) and non-conservative (87Sr/86Sr) isotopic values: The classical karst region aquifer case (Italy–Slovenia). Geosciences 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, D.; Swarzenski, P.W. The behavior of U- and Th-series nuclides in the estuarine environment. Rev. Mineral. Geochem. 2003, 52, 577–606. [Google Scholar] [CrossRef]
- Tissot, F.L.H.; Dauphas, N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochim. Cosmochim. Acta 2015, 167, 113–143. [Google Scholar] [CrossRef] [Green Version]
- Weyer, S.; Anbar, A.D.; Gerdes, A.; Gordon, G.W.; Algeo, T.J.; Boyle, E.A. Natural fractionation of 238U/235U. Geochim. Cosmochim. Acta 2008, 72, 345–359. [Google Scholar] [CrossRef]
- Chabaux, F.; Riotte, J.; Dequincey, O. U-Th-Ra fractionation during weathering and river transport. Rev. Mineral. Geochem. 2003, 52, 533–576. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S.; He, H.; Tang, J.; Zhao, J.; Feng, Y.; Yang, X.; Zhou, H. Seasonal variations of uranium in karst waters from Northeastern Sichuan, Central China and controlling mechanisms. Geochem. Int. 2020, 58, 103–112. [Google Scholar] [CrossRef]
- Cho, B.W.; Choo, C.O. Geochemical behavior of uranium and radon in groundwater of Jurassic granite area, Icheon, Middle Korea. Water 2019, 11, 1278. [Google Scholar] [CrossRef] [Green Version]
- Siebert, C.; Möller, P.; Magri, F.; Shalev, E.; Rosenthal, E.; Al-Raggad, M.; Rödiger, T. Applying rare earth elements, uranium, and 87Sr/86Sr to disentangle structurally forced confluence of regional groundwater resources: The case of the Lower Yarmouk Gorge. Geofluids 2019, 2019, 1–21. [Google Scholar] [CrossRef]
- Andersen, M.B.; Stirling, C.H.; Weyer, S. Uranium isotope fractionation. Rev. Mineral. Geochem. 2017, 82, 799–850. [Google Scholar] [CrossRef]
- Bourdon, B.; Turner, S.; Henderson, G.M.; Lundstrom, C.C. Introduction to U-series geochemistry. Rev. Mineral. Geochem. 2003, 52, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Liesch, T.; Hinrichsen, S.; Goldscheider, N. Uranium in groundwater — Fertilizers versus geogenic sources. Sci. Total Environ. 2015, 536, 981–995. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Fitzpatrick, J.A. U-series dating of impure carbonates: An isochron technique using total-sample dissolution. Geochim. Cosmochim. Acta 1991, 55, 543–554. [Google Scholar] [CrossRef]
- Garnett, E.R.; Gilmour, M.A.; Rowe, P.J.; Andrews, J.E.; Preece, R.C. 230Th/234U dating of Holocene tufas: Possibilities and problems. Quat. Sci. Rev. 2004, 23, 947–958. [Google Scholar] [CrossRef]
- Chabaux, F.; Bourdon, B.; Riotte, J. Chapter 3 U-Series geochemistry in weathering profiles, river waters and lakes. Radioact. Environ. 2008, 13, 49–104. [Google Scholar] [CrossRef]
- Chen, X.; Romaniello, S.J.; Herrmann, A.D.; Wasylenki, L.E.; Anbar, A.D. Uranium isotope fractionation during coprecipitation with aragonite and calcite. Geochim. Cosmochim. Acta 2016, 188, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Kopylova, Y.; Guseva, N.; Shestakova, A.; Khvaschevskaya, A.; Arakchaa, K. Uranium and thorium behavior in groundwater of the natural spa area “Choygan mineral water” (East Tuva). Iop Conf. Ser. Earth Environ. Sci. 2015, 27, 012034. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, R.L. Alpha-recoil damage and solution effects in minerals: Uranium isotopic disequilibrium and radon release. Geochim. Cosmochim. Acta 1982, 46, 2191–2201. [Google Scholar] [CrossRef]
- Andersen, M.B.; Stirling, C.H.; Porcelli, D.; Halliday, A.N.; Andersson, P.S.; Baskaran, M. The tracing of riverine U in Arctic seawater with very precise 234U/238U measurements. Earth Planet. Sci. Lett. 2007, 259, 171–185. [Google Scholar] [CrossRef]
- Andersen, M.B.; Erel, Y.; Bourdon, B. Experimental evidence for 234U–238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochim. Cosmochim. Acta 2009, 73, 4124–4141. [Google Scholar] [CrossRef]
- Uvarova, Y.A.; Kyser, T.K.; Geagea, M.L.; Chipley, D. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits. Geochim. Cosmochim. Acta 2014, 146, 1–17. [Google Scholar] [CrossRef]
- Suksi, J.; Rasilainen, K.; Pitkänen, P. Variations in 234U/238U activity ratios in groundwater—A key to flow system characterisation? Phys. Chem. Earthparts A/B/C 2006, 31, 556–571. [Google Scholar] [CrossRef]
- Stirling, C.H.; Andersen, M.B.; Potter, E.-K.; Halliday, A.N. Low-temperature isotopic fractionation of uranium. Earth Planet. Sci. Lett. 2007, 264, 208–225. [Google Scholar] [CrossRef]
- Goldmann, A.; Brennecka, G.; Noordmann, J.; Weyer, S.; Wadhwa, M. The uranium isotopic composition of the Earth and the solar system. Geochim. Cosmochim. Acta 2015, 148, 145–158. [Google Scholar] [CrossRef]
- Schauble, E.A. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim. Cosmochim. Acta 2007, 71, 2170–2189. [Google Scholar] [CrossRef]
- Andersen, M.B.; Vance, D.; Morford, J.L.; Bura-Nakić, E.; Breitenbach, S.F.M.; Och, L. Closing in on the marine 238U/235U budget. Chem. Geol. 2016, 420, 11–22. [Google Scholar] [CrossRef]
- Huckle, D.; Ma, L.; McIntosh, J.; Vázquez-Ortega, A.; Rasmussen, C.; Chorover, J. U-series isotopic signatures of soils and headwater streams in a semi-arid complex volcanic terrain. Chem. Geol. 2016, 445, 68–83. [Google Scholar] [CrossRef]
- Bourdon, B.; Bureau, S.; Andersen, M.B.; Pili, E.; Hubert, A. Weathering rates from top to bottom in a carbonate environment. Chem. Geol. 2009, 258, 275–287. [Google Scholar] [CrossRef]
- Palmer, M.R.; Edmond, J.M. Uranium in river water. Geochim. Cosmochim. Acta 1993, 57, 4947–4955. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Stirling, C.H. Techniques for measuring uranium-series nuclides: 1992–2002. Rev. Mineral. Geochem. 2003, 52, 23–57. [Google Scholar] [CrossRef]
- Wieser, M.E.; Schwieters, J.B. The development of multiple collector mass spectrometry for isotope ratio measurements. Int. J. Mass Spectrom. 2005, 242, 97–115. [Google Scholar] [CrossRef]
- Rusjan, S.; Sapač, K.; Petrič, M.; Lojen, S.; Bezak, N. Identifying the hydrological behavior of a complex karst system using stable isotopes. J. Hydrol. 2019, 577, 123956. [Google Scholar] [CrossRef]
- Blatnik, M.; Gabrovšek, F.; Kogovšek, B.; Mayaud, C.; Petrič, M.; Ravbar, N. Karst Hydrogeology—Research Trends and Applications: Abstracts & Guide Book; Blatnik, M., Gabrovšek, F., Kogovšek, B., Mayaud, C., Petrič, M., Ravbar, N., Eds.; ZRC Publishing: Ljubljana, Slovenia, 2019. [Google Scholar]
- Blatnik, M. Groundwater Distribution in the Recharge Area of Ljubljanica Springs. PhD Thesis, University of Nova Gorica, Nova Gorica, Slovenia, 2019. [Google Scholar]
- Pleničar, M. Postojna. In Osnovna geološka karta SFRJ 1: 100.000, list Postojna; (Basic geological map of SFR Yugoslavia 1:100 000, page Postojna); Federal Geological Survey: Belgrade, Serbia, 1970. [Google Scholar]
- Pleničar, M. Tolmač lista Postojna L 33-77. In Osnovna geološka karta SFRJ 1 : 100 000; (Commentary to the page Postojna L 33-77, Basic geological map of SFR Yugoslavia 1:100 000); Federal Geological Survey: Belgrade, Serbia, 1967; Volume 62. [Google Scholar]
- Ravbar, N.; Barberá, J.A.; Petrič, M.; Kogovšek, J.; Andreo, B. The study of hydrodynamic behaviour of a complex karst system under low-flow conditions using natural and artificial tracers (the catchment of the Unica River, SW Slovenia). Environ. Earth Sci. 2012, 65, 2259–2272. [Google Scholar] [CrossRef]
- Frantar, P. Water Balance of Slovenia 1971–2000; Frantar, P., Ed.; Ministry for Environment and Spatial Planning—Environmental Agency of the Republic of Slovenia: Ljubljana, Slovenia, 2008. [Google Scholar]
- Petric, M. Case Study: Chapter 10.3—Case study: Characterization, exploitation, and protection of the Malenščica karst spring, Slovenia. In Groundwater Hydrology of Springs; Kresic, N., Stefanovic, Z., Eds.; Elsevier: Oxford, UK, 2010; pp. 428–441. [Google Scholar] [CrossRef]
- Gabrovšek, F.; Turk, J. Observations of stage and temperature dynamics in the epiphreatic caves within the catchment area of the Ljubljanica river (Slovenia). Geol. Croat. 2010, 63, 187–193. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Šraj, M. Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model. Acta Hydrotech. 2018, 87–100. [Google Scholar] [CrossRef]
- Kogovšek, J. Fizikalno-kemične značilnosti voda v zaledju Malenščice (Slovenija) (Physico-chemical properties of waters in the Malenščica recharge area (Slovenia), in Slovene with English abstract). Acta Carsologica 2004, 33, 143–158. [Google Scholar] [CrossRef]
- Blatnik, M.; Mayaud, C.; Gabrovšek, F. Groundwater dynamics between Planinsko Polje and springs of the Ljubljanica River, Slovenia. Acta Carsologica 2019, 48. [Google Scholar] [CrossRef]
- Gieskes, J.M. The alkalinity-total carbon dioxide system in seawater. In Marine Chemistry of The Sea; Goldberg, E.D., Ed.; John Wiley and Sons: New York, NY, USA, 1974; Volume 5, pp. 123–151. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (version 2)—A computer 25 program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour. Investig. Rep. 1999. [Google Scholar] [CrossRef] [Green Version]
- Štrok, M.; Smodiš, B. Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Žirovski vrh, Slovenia. J. Environ. Radioact. 2010, 101, 22–28. [Google Scholar] [CrossRef]
- Trdin, M.; Nečemer, M.; Benedik, L. Fast decomposition procedure of solid samples by lithium borates fusion employing salicylic acid. Anal. Chem. 2017, 89, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Benedik, L.; Rovan, L.; Klemenčič, H.; Gantar, I.; Prosen, H. Natural radioactivity in tap waters from the private wells in the surroundings of the former Žirovski Vrh uranium mine and the age-dependent dose assessment. Environ. Sci. Pollut. Res. 2015, 22, 12062–12072. [Google Scholar] [CrossRef] [PubMed]
- Tanimizu, M.; Sugiyama, N.; Ponzevera, E.; Bayon, G. Determination of ultra-low 236U/238U isotope ratios by tandem quadrupole ICP-MS/MS. J. Anal. At. Spectrom. 2013, 28, 1372. [Google Scholar] [CrossRef] [Green Version]
- Rovan, L.; Štrok, M. Optimization of the sample preparation and measurement protocol for the analysis of uranium isotopes by MC-ICP-MS without spike addition. J. Anal. At. Spectrom. 2019, 34, 1882–1891. [Google Scholar] [CrossRef]
- Standards for Nuclear Safety Security and Safeguards Unit. Nuclear Certified Reference Materials 2019; Directorate G – Nuclear Safety and Security, European Commission, Directorate General, Joint Research Centre Geel: Geel, Belgium, 2019; Volume 4. [Google Scholar]
- Cheng, H.; Lawrence Edwards, R.; Shen, C.C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spötl, C.; et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 371–372, 82–91. [Google Scholar] [CrossRef]
- Szramek, K.; Walter, L.M.; Kanduč, T.; Ogrinc, N. Dolomite versus calcite weathering in hydrogeochemically diverse watersheds established on bedded carbonates (Sava and Soča Rivers, Slovenia). Aquat. Geochem. 2011, 17, 357–396. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Borsato, A.; Tooth, A.F.; Frisia, S.; Hawkesworth, C.J.; Huang, Y.; McDermott, F.; Spiro, B. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 2000, 166, 255–269. [Google Scholar] [CrossRef]
- Huang, Y.; Fairchild, I.J. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim. Cosmochim. Acta 2001, 65, 47–62. [Google Scholar] [CrossRef]
- Saunders, P.; Rogerson, M.; Wadhawan, J.D.; Greenway, G.; Pedley, H.M. Mg/Ca ratios in freshwater microbial carbonates: Thermodynamic, kinetic and vital effects. Geochim. Cosmochim. Acta 2014, 147, 107–118. [Google Scholar] [CrossRef]
- Bauer, F.; Gospodarič, R.; Habič, P. Underground Water Tracing: Investigations in Slovenia 1972–1975; Institute for Karst Research SAZU: Postojna, Slovenia, 1976. [Google Scholar]
- Kanduč, T.; Szramek, K.; Ogrinc, N.; Walter, L.M. Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry 2007, 86, 137–154. [Google Scholar] [CrossRef]
- Ravbar, N.; Engelhardt, I.; Goldscheider, N. Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: The case of the Podstenjšek spring, Slovenia. Hydrol. Process. 2011, 25, 2130–2140. [Google Scholar] [CrossRef]
- Bell, K.G. Uranium in Carbonate Rocks; USGS, Geological Survey professional paper 474-A; U.S.Geological Survey: Washington, DC, USA, 1963; p. 29. [Google Scholar]
- Romaniello, S.J.; Herrmann, A.D.; Anbar, A.D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy. Chem. Geol. 2013, 362, 305–316. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Gordon, G.W.; Anbar, A.D. Uranium isotope variations in a dolomitized Jurassic carbonate platform (Tithonian; Franconian Alb, Southern Germany). Chem. Geol. 2018, 497, 41–53. [Google Scholar] [CrossRef]
- Lund, K.; Fogler, H.S.; McCune, C.C. Acidization—I. The dissolution of dolomite in hydrochloric acid. Chem. Eng. Sci. 1973, 28, 691–700. [Google Scholar] [CrossRef]
- Kelepertsis, A.E. The geochemistry of uranium and thorium in some Lower Carboniferous sedimentary rocks (Great Britain). Chem. Geol. 1981, 34, 275–288. [Google Scholar] [CrossRef]
- Zhang, W.; Guan, P.; Jian, X.; Feng, F.; Zou, C. In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids. Geochem. Geophys. Geosyst. 2014, 15, 2744–2764. [Google Scholar] [CrossRef]
- Teichert, B.M.A.; Eisenhauer, A.; Bohrmann, G.; Haase-Schramm, A.; Bock, B.; Linke, P. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: Recorders of fluid flow variations. Geochim. Cosmochim. Acta 2003, 67, 3845–3857. [Google Scholar] [CrossRef]
- Wang, R.-M.; You, C.-F. Precise determination of U isotopic compositions in low concentration carbonate samples by MC-ICP-MS. Talanta 2013, 107, 67–73. [Google Scholar] [CrossRef]
- Guerrero, J.L.; Vallejos, Á.; Cerón, J.C.; Sánchez-Martos, F.; Pulido-Bosch, A.; Bolívar, J.P. U-isotopes and 226Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas. J. Environ. Radioact. 2016, 158–159, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Riotte, J.; Chabaux, F.; Benedetti, M.; Dia, A.; Gérard, M.; Boulègue, J.; Etamé, J. Uranium colloidal transport and origin of the 234U–238U fractionation in surface waters: New insights from Mount Cameroon. Chem. Geol. 2003, 202, 365–381. [Google Scholar] [CrossRef]
- Riotte, J.; Chabaux, F. (234U/238U) activity ratios in freshwaters as tracers of hydrological processes: The Strengbach watershed (Vosges, France). Geochim. Cosmochim. Acta 1999, 63, 1263–1275. [Google Scholar] [CrossRef]
- Durand, S.; Chabaux, F.; Rihs, S.; Duringer, P.; Elsass, P. U isotope ratios as tracers of groundwater inputs into surface waters: Example of the Upper Rhine hydrosystem. Chem. Geol. 2005, 220, 1–19. [Google Scholar] [CrossRef]
- Schaffhauser, T.; Chabaux, F.; Ambroise, B.; Lucas, Y.; Stille, P.; Reuschlé, T.; Perrone, T.; Fritz, B. Geochemical and isotopic (U, Sr) tracing of water pathways in the granitic Ringelbach catchment (Vosges Mountains, France). Chem. Geol. 2014, 374–375, 117–127. [Google Scholar] [CrossRef]
- Grzymko, T.J.; Marcantonio, F.; McKee, B.A.; Mike Stewart, C. Temporal variability of uranium concentrations and 234U/238U activity ratios in the Mississippi river and its tributaries. Chem. Geol. 2007, 243, 344–356. [Google Scholar] [CrossRef]
- Amiotte Suchet, P.; Probst, J.-L.; Ludwig, W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 2003, 17, 1038. [Google Scholar] [CrossRef] [Green Version]
- Noordmann, J.; Weyer, S.; Georg, R.B.; Jöns, S.; Sharma, M. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: New insights on the oceanic U isotope mass balance. Isot. Environ. Health Stud. 2016, 52, 141–163. [Google Scholar] [CrossRef]
- Stylo, M.; Neubert, N.; Wang, Y.; Monga, N.; Romaniello, S.J.; Weyer, S.; Bernier-Latmani, R. Uranium isotopes fingerprint biotic reduction. Proc. Natl. Acad. Sci. USA 2015, 112, 5619–5624. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zheng, W.; Anbar, A.D. Uranium isotope fractionation (238U/235U) during U(VI) uptake by freshwater plankton. Environ. Sci. Technol. 2020, 54, 2744–2752. [Google Scholar] [CrossRef] [PubMed]
Location | Name of Spring/Stream | Coordinates (Google Earth) | Type | Dominant Bedrock Lithology | Elevation (m.a.s.l.) | Discharge (m3/s) Min./Max./Mean |
---|---|---|---|---|---|---|
1 | Stržen | 45°46′14.64″ N, 14°20′10.69″ E | sinking stream | alluvial sediments | 550 | NA1 |
2 | Cerkniščica | 45°47′04.20″ N, 14°20′20.64″ E | sinking stream | alluvial sediments | 550 | 0.1/37.3/1.1 |
3 | Rak-Mali most | 45°47′26.28″ N, 14°18′11.81″ E | karst spring | limestone + dolomite | 500 | 0.003/35.5/4.2 |
4 | Rak-Kotliči | 45°47′21.00″ N, 14°17′42.10″ E | karst spring | limestone + dolomite | 500 | 0.005/29.9/10.3 |
5 | Rak-Veliki most | 45°47′44.44″ N, 14°17′19.49″ E | sinking stream | limestone + dolomite | 500 | 0.01/45.3/15.7 |
6 | Pivka | 45°46′55.10″ N, 14°12′13.42″ E | sinking stream | flysch | 500 | 0.1/43.3/4.3 |
7 | Unica-Planina cave | 45°49′11.48″ N, 14°14′44.72″ E | karst spring | limestone + dolomite | 450 | 0.3/88.9/15.6 |
8 | Malenščica | 45°49′21.00″ N, 14°15′19.21″ E | karst spring | limestone + dolomite | 450 | 1.1/11.2/6.6 |
9 | Unica-Hasberg | 45°49′43.45″ N, 14°15′19.21″ E | sinking stream | alluvial sediments | 450 | 0.9/90.2/22.2 |
10 | Hotenjka | 45°55′48.69″ N, 14°8′23.83″ E | sinking stream | alluvial sediments | 545 | NA 1 |
11 | Logaščica | 45°54′48.12″ N, 14°13′43.02″ E | sinking stream | alluvial sediments | 475 | 0.1/17.2/0.5 |
12 | Ljubljanica-Močilnik | 45°57′19.52″ N, 14°17′32.95″ E | karst spring | limestone | 300 | 2.6/81.0/31.3 |
13 | Ljubljanica-Retovje | 45°57′15.50″ N, 14°17′57.36″ E | karst spring | limestone | 300 | 2.6/81.0/31.3 |
14 | Ljubljanica-Bistra | 45°56′48.96″ N, 14°56′48.96″ E | karst spring | dolomite | 300 | 0.9/20.5/7.5 |
Site | Mg mg g−1 | Ca mg g−1 | Mg/Ca at. ratio | Si mg g−1 | Al mg g−1 | Na mg g−1 | K mg g−1 | Non-Carbonate wt% | Calcite wt% | Dolomite wt% |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4.48 | 387.89 | 0.02 | 1.30 | 27.24 | 1.47 | 6.18 | 3.91 | 100 | 0 |
3 | 3.11 | 386.26 | 0.01 | 2.66 | 9.40 | 1.43 | 1.05 | 4.50 | 99.7 | 0.3 |
4 | 4.98 | 386.54 | 0.02 | 0.66 | 24.35 | 2.47 | 4.27 | 3.16 | 100 | 0 |
5 | 3.49 | 388.76 | 0.01 | 0.39 | 24.35 | 2.03 | 4.27 | 4.18 | 100 | 0 |
6 | 3.45 | 389.49 | 0.01 | 0.77 | 14.09 | 1.78 | 1.20 | 2.93 | 100 | 0 |
7 | 6.03 | 380.27 | 0.03 | 2.80 | 14.09 | 2.72 | 1.20 | 4.84 | 99.6 | 0.4 |
8 | 5.63 | 381.73 | 0.02 | 4.60 | 2.07 | 1.90 | BLD * | 7.20 | 99 | 1 |
12 | 10.42 | 377.69 | 0.05 | 1.78 | 23.96 | 1.45 | 4.93 | 6.27 | 100 | 0 |
14 | 124.77 | 217.19 | 0.95 | 5.15 | 4.06 | 1.09 | BLD * | 0.95 | 6 | 94 |
Site | Temperature [°C] | pH | Conductivity [µS cm−1] | Redox potential [mV] | Total alkalinity [mmol L−1] | Ca2+ [mmol L−1] | Mg2+ [mmol L−1] | Mg/Ca molar ratio | Na+ [mmol L−1] | K+ [mmol L−1] | SIcalcite |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13.2 | 8.34 | 486 | 160 | 4.4 | 1.65 | 0.95 | 0.5 | 0.24 | 0.71 | 0.91 |
(3.1–26.0) | (8.13–8.59) | (332–771) | (146–167) | (3.30–5.77) | (1.37–1.77) | (0.38–1.48) | (0.21–0.85) | (0.07–0.32) | (0.02–2.60) | (0.81–1.01) | |
2 | 12.1 | 8.59 | 431 | 156 | 4.36 | 1.4 | 1.44 | 1.12 | 0.23 | 0.18 | 0.79 |
(2.6–24.7) | (8.50–8.70) | (294–485) | (139–168) | (3.74–4.96) | (0.64–1.79) | (1.35–1.48) | (0.63–2.25) | (0.16–0.33) | (0.03–0.33) | (0.18–1.09) | |
3 | 9.2 | 8.24 | 380 | 170 | 3.96 | 1.62 | 0.86 | 0.49 | 0.18 | 0.09 | 0.66 |
(3.8–14.2) | (7.89–8.54) | (338–430) | (160–180) | (3.02–4.84) | (1.41–1.79) | (0.15–1.06) | (0.25–0.74) | (0.08–0.27) | (0.01–0.23) | (0.41–0.84) | |
4 | 10.8 | 8.1 | 322 | 160 | 3.37 | 1.72 | 0.47 | 0.25 | 0.09 | 0.07 | 0.59 |
(4.9–16.9) | (7.75–8.47) | (215–383) | (121–183) | (2.95–3.69) | (1.37–2.05) | (0.39–0.55) | (0.19–0.31) | (0.07–0.14) | (0.02–0.17) | (0.33–0.89) | |
5 | 12.6 | 8.21 | 338 | 172 | 3.59 | 1.59 | 0.57 | 0.35 | 0.12 | 0.08 | 0.71 |
(4.1–25.7) | (7.75–8.65) | (259–387) | (160–186) | (3.20–3.83) | (1.21–1.92) | (0.44–0.75) | (0.20–0.62) | (0.08–0.21) | (0.02–0.21) | (0.34–1.05) | |
6 | 12.2 | 8 | 386 | 173 | 3.57 | 1.97 | 0.18 | 0.08 | 0.48 | 0.35 | 0.58 |
(4.6–22.6) | (7.63–8.40) | (341–450) | (144–196) | (2.73–4.41) | (1.74–2.12) | (0.16–0.21) | (0.06–0.10) | (0.28–0.81) | (0.04–0.66) | (0.05–0.94) | |
7 | 9.6 | 8.08 | 349 | 158 | 3.58 | 1.84 | 0.35 | 0.18 | 0.28 | 0.15 | 0.61 |
(5.7–12.9) | (7.61–8.42) | (276–396) | (136–181) | (3.37–3.73) | (1.69–2.14) | (0.27–0.40) | (0.10–0.22) | (0.19–0.38) | (0.02–0.32) | (0.3–0.97) | |
8 | 8.4 | 8.07 | 356 | 159 | 3.59 | 1.75 | 0.44 | 0.23 | 0.25 | 0.09 | 0.56 |
(5.1–11.9) | (7.57–8.42) | (340–404) | (123–203) | (3.23–3.84) | (1.51–2.04) | (0.26–0.60) | (0.13–0.33) | (0.08–0.88) | (0.03–0.21) | (0.20–0.86) | |
9 | 9.2 | 7.99 | 419 | 159 | 3.64 | 1.81 | 0.49 | 0.26 | 0.26 | 0.1 | 0.51 |
(5.1–12.3) | (7.69–8.37) | (342–650) | (137–177) | (3.39–3.90) | (1.63–2.12) | (0.39–0.60) | (0.14–0.37) | (0.09–0.73) | (0.02–0.18) | (0.24–0.84) | |
10 | 11.8 | 8.48 | 383 | 161 | 4.37 | 1.36 | 1.29 | 0.88 | 0.07 | 0.04 | 0.95 |
(4.6–23) | (8.26–8.56) | (284–439) | (145–172) | (4.04–4.95) | (1.07–1.54) | (1.20–1.39) | (0.60–1.12) | (0.03–0.14) | (0.03–0.09) | (0.73–1.15) | |
11 | 10.2 | 8.44 | 429 | 150 | 4.38 | 1.52 | 1.31 | 0.77 | 0.13 | 0.07 | 0.94 |
(4.8–19.3) | (8.17–8.61) | (414–441) | (124–174) | (4.11–4.80) | (1.34–1.65) | (1.23–1.39) | (0.60–0.84) | (0.10–0.19) | (0.04–0.11) | (0.68–1.08) | |
12 | 9.4 | 7.94 | 344 | 164 | 3.35 | 1.72 | 0.53 | 0.28 | 0.36 | 0.11 | 0.4 |
(6.7–11.5) | (7.54–8.33) | (283–400) | (140–186) | (2.88–3.76) | (1.44–2.43) | (0.32–0.75) | (0.20–0.39) | (0.17–1.00) | (0.02–0.28) | (0.22–0.68) | |
13 | 10.6 | 7.9 | 358 | 167 | 3.72 | 1.81 | 0.48 | 0.25 | 0.21 | 0.08 | 0.44 |
(6.9–14.2) | (7.50–8.17) | (307–419) | (150–185) | (3.11–4.26) | (1.65–2.19) | (0.32–0.66) | (0.18–0.40) | (0.11–0.33) | (0.02–0.23) | (0.16–0.79) | |
14 | 11.3 | 7.75 | 374 | 177 | 4.06 | 1.83 | 0.59 | 0.3 | 0.18 | 0.05 | 0.35 |
(7.8–14.7) | (7.52–7.91) | (315–429) | (150–199) | (3.79–4.55) | (1.72–2.03) | (0.54–0.32) | (0.20–0.35) | (0.10–0.23) | (0.02–0.11) | (0.18–0.52) |
Parameter/Site | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | −0.96 | −0.93 | −0.89 | −0.81 | −0.93 | −0.97 | −0.64 | −0.98 | 0.44 | −0.87 | −0.94 | −0.85 |
pH | 0.90 | 0.77 | 0.80 | 0.57 | 0.25 | 0.38 | 0.06 | 0.90 | 0.68 | 0.11 | 0.19 | −0.18 |
Conductivity | 0.64 | −0.50 | 0.24 | 0.20 | −0.74 | 0.15 | 0.04 | −0.56 | −0.28 | −0.20 | −0.21 | 0.57 |
Tot. alkalinity | 0.77 | −0.83 | −0.24 | −0.79 | −0.63 | −0.79 | −0.39 | −0.58 | 0.83 | −0.47 | −0.96 | −0.69 |
Sicalcit | −0.33 | 0.65 | 0.82 | 0.33 | −0.31 | 0.26 | 0.04 | 0.88 | 0.85 | −0.10 | −0.16 | −0.66 |
Mg2+ | −0.50 | −0.99 | −0.23 | −0.54 | 0.35 | 0.23 | 0.87 | 0.02 | −0.34 | −0.83 | −0.91 | 0.57 |
Ca2+ | 0.87 | 0.78 | 0.43 | 0.33 | 0.64 | 0.13 | 0.66 | 0.09 | −0.78 | −0.11 | −0.07 | −0.01 |
Na+ | −0.55 | −0.54 | −0.10 | −0.09 | −0.87 | −0.61 | −0.63 | −0.25 | 0.01 | −0.30 | 0.51 | 0.26 |
K+ | 0.36 | −0.52 | 0.50 | −0.15 | 0.84 | −0.65 | 0.91 | 0.76 | −0.19 | 0.28 | 0.55 | −0.10 |
Altot | −0.55 | −0.23 | −0.36 | −0.02 | −0.40 | −0.35 | 0.72 | 0.70 | 0.01 | 0.07 | −0.02 | 0.18 |
Utot | 0.54 | −0.83 | 0.19 | 0.10 | −0.48 | 0.21 | 0.27 | 0.18 | −0.59 | −0.82 | −0.87 | 0.34 |
Mg2+/Ca2+ | −0.79 | −0.98 | −0.59 | −0.49 | −0.35 | 0.12 | 0.83 | −0.07 | 0.58 | −0.94 | −0.75 | 0.60 |
δ238U | 1.00 | 0.25 | 0.51 | 0.59 | −0.41 | 0.50 | 0.87 | 0.59 | 0.18 | 0.60 | 0.59 | 0.75 |
234U/238U | −0.86 | −0.90 | −0.86 | −0.87 | −0.89 | −0.49 | −0.91 | −0.93 | 0.13 | −0.95 | −0.95 | −0.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovan, L.; Lojen, S.; Zuliani, T.; Kanduč, T.; Petrič, M.; Horvat, B.; Rusjan, S.; Štrok, M. Comparison of Uranium Isotopes and Classical Geochemical Tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia). Water 2020, 12, 2064. https://doi.org/10.3390/w12072064
Rovan L, Lojen S, Zuliani T, Kanduč T, Petrič M, Horvat B, Rusjan S, Štrok M. Comparison of Uranium Isotopes and Classical Geochemical Tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia). Water. 2020; 12(7):2064. https://doi.org/10.3390/w12072064
Chicago/Turabian StyleRovan, Leja, Sonja Lojen, Tea Zuliani, Tjaša Kanduč, Metka Petrič, Barbara Horvat, Simon Rusjan, and Marko Štrok. 2020. "Comparison of Uranium Isotopes and Classical Geochemical Tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia)" Water 12, no. 7: 2064. https://doi.org/10.3390/w12072064