Hydrogeochemical Characters of Karst Aquifers in Central Italy and Relationship with Neotectonics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Settings
2.2. Anaytical Methodologies
3. Results
4. Discussion
4.1. Major Ion Chemistry
4.2. Dissolved Gases
4.3. O, D, C Isotopic Composition
4.4. Potential Suitability of the Studied sites for the Monitoring of Neotectonic Activity and Its Spatial Distribution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aggarwal, Y.P.; Sykes, L.R.; Armbruster, J.; Sbar, M.L. Premonitory Changes in Seismic Velocities and Prediction of Earthquakes. Nature 1973, 241, 101–104. [Google Scholar] [CrossRef]
- Roeloffs, E.A. Hydrologic precursors to earthquakes: A review. Pure Appl. Geophys. 1988, 126, 177–209. [Google Scholar] [CrossRef]
- Reasenberg, P.A. Foreshock occurrence before large earthquakes. J. Geophys. Res. Solid Earth 1999, 104, 4755–4768. [Google Scholar] [CrossRef]
- King, C.Y.; Azuma, S.; Ohno, M.; Asai, Y.; He, P.; Kitagawa, Y.; Igarashi, G.; Wakita, H. In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophys. J. Int. 2000, 143, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Favara, R.; Grassa, F.; Inguaggiato, S.; Valenza, M. Hydrogeochemisty and stable isotopes of the thermal springs: Earthquake-related chemical changes along Belice Fault (Western Sicily). Appl. Geochem. 2001, 16, 1–17. [Google Scholar] [CrossRef]
- Lucente, F.P.; De Gori, P.; Margheriti, L.; Piccinini, D.; Di Bona, M.; Chiarabba, C.; Piana Agostinetti, N. Temporal variation of seismic velocity and anisotropy before the 2009 M W 6.3 L’Aquila earthquake, Italy. Geology 2010, 38, 1015–1018. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Petitta, M.; Rusi, S.; Tallini, M. Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol. Process 2010, 25, 1754–1764. [Google Scholar] [CrossRef]
- Riguzzi, F.; Crespi, M.; Devoti, R.; Doglioni, C.; Pietrantonio, G.; Pisani, A.R. Geodetic strain rate and earthquake size: New clues for seismic hazard studies. Phys. Earth Planet. Inter. 2012, 206–207, 67–75. [Google Scholar] [CrossRef]
- Barberio, M.D.; Barbieri, M.; Billi, M.; Doglioni, C.; Petitta, M. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Entif. Rep. 2017, 15, 11735. [Google Scholar] [CrossRef]
- Rikitake, T. Earthquake prediction. Earth Sci. Rev. 1968, 4, 245–282. [Google Scholar] [CrossRef]
- Wakita, H. Geochemistry as a tool for earthquake prediction. J. Phys. Earth. 1977, 25, 175–183. [Google Scholar] [CrossRef]
- Wakita, H. Changes in groundwater level and chemical composition. In Earth-quake Prediction Techniques; University of Tokyo: Tokyo, Japan, 1982; pp. 171–216. [Google Scholar]
- Carapezza, M.; Nuccio, P.M.; Valenza, M. Geochemical precursor of earthquake. In High Pressure Science & Technology; Pergamon Press: New York, NY, USA, 1980; pp. 90–103. [Google Scholar]
- Cai, Z.; Shi, H.; Zhang, W.; Luo, G.E.X.; Shi, X.; Yang, H. Some applications of fluid-geochemical methods to earthquake prediction in China: Proceeding of International Symposium on Continental Seismology and Earthquake Prediction; Seismological Press: Beijing, China, 1984; pp. 384–395. [Google Scholar]
- Barsukov, V.L.; Varshal, G.M.; Zamokina, N.S. Recent results of hydro- geochemical studies for earthquake prediction in USSR. Pure Appl. Geophys. 1985, 122, 143–156. [Google Scholar] [CrossRef]
- Thomas, D. Geochemical precursor to seismic activity. Pure Appl. Geophys. 1988, 126, 241–266. [Google Scholar] [CrossRef]
- Valenza, M.; Nuccio, P.M. Geochemical precursors of earthquakes. Some experiences in Italy. In Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions; IAEA: Vienna, Austria, 1993; pp. 44–47. [Google Scholar]
- Favara, R.; Italiano, F.; Martinelli, G. Earthquake-induced chemical changes in the thermal waters of the Umbria region during the 1997-1998 seismic swarm. Terra Nova 2001, 13, 227–233. [Google Scholar] [CrossRef]
- Sibson, R.H. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 1992, 211, 283–293. [Google Scholar] [CrossRef]
- Muir-Wood, R.; King, G.C.P. Hydrological signatures of earthquake strain. J. Geophys. Res. Solid Earth 1993, 982, 22035–22068. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Inter. 2011, 184, 160–171. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on-off versus coseismic fluids reaction. Geosci. Front. 2011, 5, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Casale, P.; De Martin, M.; Germani, C. Il Progetto Ipodata: Stazioni sismiche in siti ipogei. In Proceedings of the Atti VIII Convegno Nazionale di Speleologia in Cavità Artificiali, Ragusa, Italy, 7–9 September 2012. [Google Scholar]
- Guidoboni, E.; Ferrari, G.; Mariotti, D.; Comastri, A.; Tarabusi, G.; Sgattoni, G.; Valensise, G. (2018) - CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: http://storing.ingv.it/cfti/cfti5/ (accessed on 12 February 2020).
- ISPRA. ITHACA—Catalogo Delle Faglie Capaci. Available online: http://www.isprambiente.gov.it/it/progetti/suolo-e-territorio-1/ithaca-catalogo-delle-faglie-capaci (accessed on 12 February 2020).
- Società Speleologica Italiana—Carta Delle Principali Aree E Sorgenti Carsiche D’italia; ERGA Edizioni: Firenze, Italy, 2002.
- Barbieri, M.; Nigro, A.; Petitta, M. Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): Geochemical characterization and implication for drinking uses. Environ. Earth Sci. 2017, 76, 393. [Google Scholar] [CrossRef]
- Petitta, M.; Primavera, P.; Tuccimei, P.; Aravena, R. Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): A geochemical and isotope approach. Environ. Earth Sci. 2001, 63, 11–30. [Google Scholar] [CrossRef]
- Bernard, P. From the search of ‘precursor’ to the research on ‘crustal transients’. Tectonophysics 2001, 338, 225–232. [Google Scholar] [CrossRef]
- Favara, R.; Grassa, F.; Madonia, P.; Valenza, M. Flow Changes and Geochemical Anomalies in Warm and Cold Springs Associated with the 1992–1994 Seismic Sequence at Pollina, Central Sicily, Italy. Pure Appl. Geophys. 2007, 164, 1–20. [Google Scholar] [CrossRef]
- Madonia, P.; Cusano, P.; Diliberto, I.S.; Cangemi, M. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity. Phys. Chem. Earth 2013, 63, 160–169. [Google Scholar] [CrossRef]
- Capasso, G.; Inguaggiato, S. A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem. 1998, 13, 631–642. [Google Scholar]
- Capasso, G.; Favara, R.; Grassa, F.; Inguaggiato, S.; Longo, M. On-line technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water samples (δ13C). Ann. Geophys. 2005, 48, 159–166. [Google Scholar]
- Zhang, J.; Quay, P.D.; Wilbur, D.O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geoc. Cosm. Acta. 1995, 59, 107–114. [Google Scholar] [CrossRef]
- Langelier, W.F.; Ludwig, F. Graphical methods for indicating the mineral character of natural waters. J. Am. Water Works Assoc. 1942, 34, 335–352. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U.S. Geological Survey Techniques and Methods. Available online: http://pubs.usgs.gov/tm/06/a43 (accessed on 12 February 2020).
- Célico, P.; Gonfiantini, R.; Koizumi, M.; Mangano, F. Environmental isotope studies of limestone aquifers in central Italy. In Isotope Hydrology; IAEA: Vienna, Austria, 1984; pp. 173–192. [Google Scholar]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overlap map. J. Hydrol. 2003, 270, 75–88. [Google Scholar]
- ISPRA. Carta Geologica d’Italia 1:50000, Foglio 398 Anagni; Litografia Artistica Cartografica: Firenze, Italy, 1975. [Google Scholar]
- Postpischl, D.; Agostini, S.; Forti, P.; Quinif, Y. Palaeoseismicity from karst sediments: The “Grotta de1 Cervo” cave case study (Central Italy). Tectonophysics 2011, 193, 33–44. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Kerrick, D.M.; Rogie, J.; Parello, F.; Peruzzi, L.; Zanzari, A.R. Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 1999, 159, 205–222. [Google Scholar] [CrossRef]
- Madonia, P.; D’Aleo, R.; Di Maggio, C.; Favara, R.; Hartwig, A. The use of shallow dripwater as an isotopic marker of seepage in karst areas: A comparison between Western Sicily (Italy) and the Harz Mountains (Germany). Appl. Geoch. 2013, 34, 231–239. [Google Scholar] [CrossRef]
- Gat, J.R. Groundwater. In Stable Isotope Hydrology; Gat, J.R., Gonfiantini, R., Eds.; Technical Reports Series n. 210; IAEA: Vienna, Austria, 1981; pp. 223–240. [Google Scholar]
- Di Domenica, A.; Turtù, A.; Satolli, S.; Calamita, F. Relationships between thrusts and normal faults in curved belts: New insight in the inversion tectonics of the Central-Northern Apennines (Italy). J. Struct. Geol. 2012, 42, 104–117. [Google Scholar] [CrossRef]
- Kazakis, N.; Chalikakis, K.; Mazzilli, N.; Ollivier, C.; Manakos, A.; Voudouris, K. Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer. Sci. Total Environ. 2018, 643, 592–609. [Google Scholar] [CrossRef] [PubMed]
ID | Lon | Lat | Ele | TP | T | pH | EC | Eh | Na | K | Mg | Ca | Cl | SO4 | Alk | δ18O | δD | δ13C | N2 | CH4 | CO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANB | 13.2 | 41.7 | 445 | AC | 15.7 | 7.15 | 1036 | −16 | 1.53 | 1.89 | 2.01 | 5.06 | 1.87 | 1.71 | 6.13 | −6.7 | −43 | −12.3 | 12.69 | bdl | 9.25 |
ANV | 13.2 | 41.7 | 415 | AC | 13.6 | 7.27 | 1230 | −22 | 2.25 | 1.82 | 2.74 | 6.74 | 1.61 | 1.22 | 8.29 | −6.7 | −42 | −6.0 | 11.52 | 421 | 9.59 |
BAG | 12.9 | 43.1 | 630 | S | 12.2 | 7.34 | 390 | −30 | 0.15 | 0.02 | 0.15 | 4.08 | 0.17 | 0.22 | 3.95 | −9.1 | −57 | −12.4 | 20.46 | bdl | 9.90 |
BAT | 12.9 | 43.1 | 630 | S | nd | 7.32 | 403 | 0.14 | 0.02 | 0.17 | 4.10 | 0.17 | 0.27 | 3.95 | −9.1 | −57 | nd | bdl | nd | ||
CAS | 13.5 | 42.3 | 598 | S | 10.6 | 7.24 | 514 | −21 | 0.27 | 0.08 | 0.21 | 5.09 | 0.33 | 0.11 | 5.10 | −8.9 | −62 | −14.5 | 13.40 | bdl | 19.5 |
COT | 13 | 42.4 | 409 | S | 17.7 | 6.19 | 2582 | 37 | 1.21 | 0.16 | 7.80 | 30.3 | 0.96 | 4.94 | 33.0 | −8.3 | −58 | 2.0 | 18.91 | bdl | 128 |
FOR | 12.6 | 42.5 | 374 | S | 15 | 6.97 | 608 | −8 | 0.45 | 0.11 | 0.20 | 5.84 | 0.45 | 0.44 | 5.65 | −7.1 | −42 | −15.2 | 14.62 | bdl | 25.9 |
IME | 13.2 | 42 | 1025 | S | 9.4 | 7.79 | 339 | −53 | 0.08 | 0.01 | 1.07 | 2.58 | 0.09 | 0.07 | 3.55 | −9.0 | −56 | −11.3 | 15.28 | 785 | 2.68 |
MIC | 13 | 42.4 | 410 | S | 15.2 | 6.16 | 1497 | 40 | 0.38 | 0.10 | 4.93 | 20.0 | 0.30 | 2.75 | 22.2 | −8.9 | −55 | 0.1 | 7.67 | 7.7 | 550 |
PES | 13 | 42.4 | 408 | S | 12.4 | 6.88 | 684 | −3 | 0.17 | 0.03 | 1.95 | 6.22 | 0.14 | 0.33 | 7.96 | −9.0 | −57 | −2.7 | 16.44 | 799 | 44.7 |
SCI | 12.7 | 43.4 | 594 | S | 11.4 | 7.59 | 336 | −43 | 0.19 | 0.01 | 0.44 | 2.99 | 0.21 | 0.60 | 2.70 | −8.8 | −53 | −10.4 | 18.44 | 368 | 2.90 |
TUF | 13.2 | 41.7 | 298 | S | 16.1 | 6.93 | 838 | −3 | 0.22 | 0.04 | 2.63 | 7.72 | 0.23 | 0.47 | 10.1 | −7.9 | −47 | −2.5 | 14.90 | 576 | 58.0 |
VAC | 13.3 | 42.2 | 1235 | S | 10.9 | 8.18 | 318 | −70 | 0.06 | 0.01 | 0.09 | 3.50 | 0.07 | 0.03 | 3.42 | −8.9 | −62 | nd | 13.84 | 828 | 3.06 |
VES | 12.6 | 42.3 | 129 | S | 16.3 | 7.54 | 919 | −40 | 1.56 | 0.15 | 1.07 | 7.42 | 1.15 | 0.49 | 7.34 | −6.3 | −38 | −14.4 | 15.36 | 785 | 9.02 |
VIT | 13 | 42.4 | 408 | S | 12.3 | 6.04 | 1148 | 23 | 0.31 | 0.05 | 2.63 | 11.1 | 0.28 | 1.66 | 12.2 | −9.0 | −57 | −1.4 | 17.29 | 409 | 190 |
BEA | 13.3 | 42 | 1058 | C | 9.6 | 7.72 | 354 | −50 | 0.09 | 0.01 | 0.19 | 3.68 | 0.11 | 0.04 | 3.57 | −8.5 | −52 | −11.0 | 14.58 | bdl | 3.66 |
CER | 13.1 | 42.1 | 883 | C | nd | 7.22 | 374 | −20 | 0.15 | 0.01 | 0.13 | 3.79 | 0.17 | 0.05 | 3.87 | −7.7 | −47 | −14.8 | 14.85 | bdl | 9.40 |
MAL | 13.5 | 42.4 | 939 | C | nd | 7.64 | 280 | −44 | 0.06 | 0.01 | 0.40 | 2.79 | 0.08 | 0.06 | 3.06 | −10.3 | −69 | −9.9 | 15.00 | bdl | 3.98 |
OMM | 13.3 | 42 | 727 | C | 14.6 | 7.56 | 333 | −40 | 0.08 | 0.01 | 0.93 | 2.83 | 0.09 | 0.04 | 3.61 | −9.5 | −57 | −11.1 | 15.16 | 42 | bdl |
SFE | 13.5 | 42.3 | 744 | C | 11.5 | 7.2 | 460 | −21 | 0.27 | 0.03 | 0.58 | 4.40 | 0.26 | 0.12 | 4.92 | −9.3 | −62 | −14.3 | 14.26 | bdl | 12.9 |
PFB | 13.7 | 41.7 | 300 | W | 11.3 | 7.14 | 573 | −13 | 0.14 | 0.02 | 1.13 | 5.82 | 0.11 | 0.09 | 6.82 | −8.5 | −50 | −3.2 | 16.16 | 611 | 26.8 |
CLI | 12.8 | 42.8 | 227 | P | 12.3 | 7.2 | 664 | −20 | 0.20 | 0.03 | 2.14 | 6.56 | 0.17 | 5.13 | 3.69 | −8.4 | −54 | −7.5 | 19.58 | bdl | 10.8 |
STI | 12.5 | 42.5 | 77 | P | 16.8 | 6.54 | 3600 | 17 | 20.4 | 0.11 | 4.67 | 16.59 | 20.7 | 9.89 | 11.8 | −7.9 | −47 | −2.6 | 18.91 | bdl | 128 |
SUS | 12.9 | 42.5 | 384 | P | 10.6 | 7.32 | 825 | −27 | 0.13 | 0.02 | 2.74 | 6.79 | 0.11 | 6.11 | 3.57 | −8.6 | −54 | −6.5 | 21.86 | bdl | 7.77 |
Ranking | |||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 |
BEA | CER | BAG | ANB | CLI | COT |
CAS | FOR | ANV | SUS | MIC | |
IME | SCI | PFB | PES | ||
MAL | VES | STI | |||
OMM | TUF | ||||
SFE | VIT | ||||
VAC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madonia, P.; Cangemi, M.; Oliveri, Y.; Germani, C. Hydrogeochemical Characters of Karst Aquifers in Central Italy and Relationship with Neotectonics. Water 2020, 12, 1926. https://doi.org/10.3390/w12071926
Madonia P, Cangemi M, Oliveri Y, Germani C. Hydrogeochemical Characters of Karst Aquifers in Central Italy and Relationship with Neotectonics. Water. 2020; 12(7):1926. https://doi.org/10.3390/w12071926
Chicago/Turabian StyleMadonia, Paolo, Marianna Cangemi, Ygor Oliveri, and Carlo Germani. 2020. "Hydrogeochemical Characters of Karst Aquifers in Central Italy and Relationship with Neotectonics" Water 12, no. 7: 1926. https://doi.org/10.3390/w12071926
APA StyleMadonia, P., Cangemi, M., Oliveri, Y., & Germani, C. (2020). Hydrogeochemical Characters of Karst Aquifers in Central Italy and Relationship with Neotectonics. Water, 12(7), 1926. https://doi.org/10.3390/w12071926