Examining Water Area Changes Accompanying Dam Construction in the Madeira River in the Brazilian Amazon
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Collection of Annual Land Use and Land Cover Data
3.2. Examining the Impacts of Dam Construction on Land Use and Land Cover Change
3.2.1. Difference Components
3.2.2. Intensity Analysis
3.2.3. Buffer Analysis
4. Results
4.1. Impacts of Dam Construction on LULCC
4.2. Impacts of Dam Construction on Water Area Change
4.2.1. Water Surface Area Change and Newly Flooded Area after Dam Construction
4.2.2. Dynamics of Water Change Components
4.2.3. Dynamics of Water Gross Gain and Gross Loss
4.2.4. Water Gain Size and Intensity from Other Categories
4.3. Characteristics of Water Area Change in Different Buffer Distances
5. Discussion
5.1. The Uncertainty of Classification and Its Influence
5.2. Planned Versus Observed Impacts of Dam Construction on Water Area
5.3. Water Change Intensity and Component Among Different Regions
5.4. Distance Effects of Dam Construction on Water Area Change
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Júnior, J.L.S.; Tomasella, J.; Rodriguez, D.A. Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin. Clim. Chang. 2015, 129, 117–129. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; d’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Castello, L.; Macedo, M.N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 2016, 22, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, S.M.V.; Matricardi, E.A.T.; Numata, I.; Lefebvre, P.A. Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: Upper Madeira river example 2006–2015. Remote Sens. Appl. Soc. Environ. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Fearnside, P.M. Brazil’s Madeira river dams: A setback for environmental policy in Amazonian development. Water Altern. 2014, 7, 154–167. [Google Scholar]
- Fearnside, P.M. Impacts of Brazil’s Madeira river dams: Unlearned lessons for hydroelectric development in Amazonia. Environ. Sci. Policy 2014, 38, 164–172. [Google Scholar] [CrossRef]
- Jiang, X.D.; Lu, D.S.; Moran, E.; Calvi, M.F.; Dutra, L.V.; Li, G.Y. Examining impacts of the Belo Monte hydroelectric dam construction on land-cover changes using multitemporal Landsat imagery. Appl. Geogr. 2018, 97, 35–47. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Cella-Ribeiro, A.; Doria, C.; Dutka-Gianelli, J.; Alves, H.; Torrente-Vilara, G. Temporal fish community responses to two cascade run-of-river dams in the Madeira River, Amazon basin: Fish responses to Amazon run-of-river dams. Ecohydrology 2017, 10, e1889. [Google Scholar] [CrossRef]
- Fearnside, P.M. Decision-making on Amazon dams: Politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 2013, 6, 313–325. [Google Scholar]
- Pracheil, B.M.; Derolph, C.R.; Schramm, M.P.; Bevelhimer, M.S. A fish-eye view of riverine hydropower systems: The current understanding of the biological response to turbine passage. Rev. Fish Biol. Fish. 2016, 26, 153–167. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C. Impact of the Farakka Dam on Thresholds of the Hydrologic Flow Regime in the Lower Ganges River Basin (Bangladesh). Water 2014, 6, 2501–2518. [Google Scholar] [CrossRef] [Green Version]
- Pal, S. Impact of water diversion on hydrological regime of Atreyee River of Indo-Bangladesh. Int. J. River Basin Manag. 2016, 14, 459–475. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Piman, T.; Lennaerts, T.; Southalack, P. Assessment of hydrological changes in the lower Mekong Basin from Basin-Wide development scenarios. Hydrol. Proces. 2013, 27, 2115–2125. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Wada, Y. Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain. Water Resour. Res. 2017, 53, 3854–3877. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.H.; Liu, S.L.; Deng, L.; Dong, S.K.; Yang, Z.F.; Liu, Q. Determining the influencing distance of dam construction and reservoir impoundment on land use: A case study of Manwan Dam, Lancang River. Ecol. Eng. 2013, 53, 235–242. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S. Impact of dam on inundation regime of flood plain wetland of Punarbhaba river basin of Barind tract of Indo-Bangladesh. Int. Soil Water Conserv. Res. 2017, 5, 109–121. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.T.; Rahi, K.A.; Leabi, W.K. Hydrological impact of Ilisu Dam on Mosul Dam; the River Tigris. Geosciences 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Yihdego, Y.; Khalil, A.; Salem, H.S. Nile River’s basin dispute: Perspectives of the Grand Ethiopian Renaissance Dam (GERD). Glob. J. Hum. Soc. Sci. 2017, 17, 1–21. [Google Scholar]
- Zhang, F.; Tashpolat, T.; Kung, H.; Ding, J.L. The change of land use/cover and characteristics of landscape pattern in arid areas oasis: An application in Jinghe, Xinjiang. Geo-spatial Inf. Sci. 2010, 13, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Yihdego, Y.; Webb, J.A. An empirical water budget model as a tool to identify the impact of land-use change in stream flow in southeastern Australia. Water Resour. Manag. 2013, 27, 4941–4958. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in stream flow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lobo, G.D.S.; Wittmann, F.; Piedade, M.T.F. Response of black-water floodplain (igapó) forests to flood pulse regulation in a dammed Amazonian river. For. Ecol. Manag. 2019, 434, 110–118. [Google Scholar] [CrossRef]
- Lyon, S.W.; King, K.; Polpanich, O.; Lacombe, G. Assessing hydrologic changes across the Lower Mekong Basin. J. Hydrol. Reg. Stud. 2017, 12, 303–314. [Google Scholar] [CrossRef]
- Shrestha, B.; Cochrane, T.A.; Caruso, B.S.; Arias, M.E. Land use change uncertainty on streamflow and sediment projections in areas undergoing rapid development: A case study in the Mekong Basin. Land Degrad. Dev. 2018, 29, 835–848. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S. Effects of damming on the hydrological regime of Punarbhaba river basin wetlands. Ecol. Eng. 2019, 135, 61–74. [Google Scholar] [CrossRef]
- Li, D.Q.; Lu, D.S.; Li, N.; Wu, M.; Shao, X.X. Quantifying annual land-cover change and vegetation greenness variation in a coastal ecosystem using dense time-series Landsat data. Gisci. Remote Sens. 2019, 56, 769–793. [Google Scholar] [CrossRef]
- Li, D.Q.; Lu, D.S.; Wu, M.; Shao, X.X.; Wei, J.H. Examining land cover and greenness dynamics in Hangzhou Bay in 1985–2016 using Landsat time-series data. Remote Sens. 2018, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Peñas, F.J.; Barquín, J. Assessment of large-scale patterns of hydrological alteration caused by dams. J. Hydrol. 2019, 572, 706–718. [Google Scholar] [CrossRef]
- Bonnema, M.; Hossain, F. Inferring reservoir operating patterns across the Mekong Basin using only space observations. Water Resour. Res. 2017, 53, 3791–3810. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Chen, G.; Powers, R.P.; de Carvalho, L.M.T.; Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 2015, 63, 1–8. [Google Scholar] [CrossRef]
- Huang, J.L.; Pontius, R.G., Jr.; Li, Q.S.; Zhang, Y.J. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Huang, B.Q.; Huang, J.L.; Pontius, R.G., Jr.; Tu, Z.S. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Gao, Y.; Giner, N.M.; Kohyama, T.; Osaki, M.; Hirose, K. Design and interpretation of intensity analysis illustrated by land change in Central Kalimantan, Indonesia. Land 2013, 2, 351–369. [Google Scholar] [CrossRef]
- Romero-Ruiz, M.H.; Flantua, S.G.A.; Tansey, K.; Berrio, J.C. Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl. Geogr. 2012, 32, 766–776. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.L.; Pontius, R.G., Jr.; Hong, H.S. Land classification and change intensity analysis in a coastal Watershed of Southeast China. Sensors 2014, 14, 11640–11658. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G., Jr.; Santacruz, A. Quantity, exchange, and shift components of difference in a square contingency table. Int. J. Remote Sens. 2014, 35, 7543–7554. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr. Component intensities to relate difference by category with difference overall. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 94–99. [Google Scholar] [CrossRef]
- Quan, B.; Ren, H.G.; Pontius, R.G., Jr.; Liu, P.L. Quantifying spatiotemporal patterns concerning land change in Changsha, China. Landsc. Ecol. Eng. 2018, 14, 257–267. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, M.; Feng, Y.J.; Pontius, R.G., Jr. GlobeLand30 maps show four times larger gross than net land change from 2000 to 2010 in Asia. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 240–248. [Google Scholar] [CrossRef]
- De Souza, C.A.; Vieira, L.C.G.; Legendre, P.; de Carvalho, P.; Velho, L.F.M.; Beisner, B. Damming interacts with the flood pulse to alter zooplankton communities in an Amazonian river. Freshw. Biol. 2019, 64, 1040–1053. [Google Scholar] [CrossRef]
- Bastos, W.R.; de Almeida, R.; Dórea, J.G.; Barbosa, A.C. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon). Ecotoxicology 2007, 16, 341–346. [Google Scholar] [CrossRef]
- Melo, T.; Torrente-Vilara, G.; Röpke, C.P. Flipped reduce tarianism: A vegan fish subordinated to carnivory by suppression of the flooded forest in the Amazon. For. Ecol. Manag. 2019, 435, 138–143. [Google Scholar] [CrossRef]
- Wang, H.R.; Chen, Y.C.; Liu, Z.W.; Zhu, D.J. Effects of the “Run-of-River” hydro scheme on macroinvertebrate communities and habitat conditions in a Mountain River of Northeastern China. Water 2016, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Map errors that could account for deviations from a uniform intensity of land change. Int. J. Geogr. Inf. Sci. 2013, 27, 1717–1739. [Google Scholar] [CrossRef]
Information | Jirau dam | Santo Antônio dam |
---|---|---|
Power generation capacity (MW) | 3750 | 3150 |
Dam height (m) | 63 | 13.9 |
Dam length (m) | 980 | 3100 |
Number of bulb turbines | 50 | 44 |
Water levels (m) | 82.5–90 | 56.3–71.3 |
Reservoir area range (km2) | 21–207.7 | 164–271 |
The maximum of possible storage volumes of the reservoirs (×106 m3) | 2747 | 2710 |
Maximum reservoir surface area (km2) [6,45] | 258 | 271 |
Dam completion year [6] | 2012 | 2011 |
Land Cover Category | Definition | Area (km2) | ||
---|---|---|---|---|
1985 | 2011 | 2017 | ||
Forest | Natural forest and plantations | 11,283.9 | 9533.4 | 9299 |
Other non-forest natural formation (ONFNF) | In MapBiomas, wetland, grassland formation, salt flat, and other non-forest natural formation (ONFNF) are grouped to non-forest natural formation. In this study area, only ONFNF existed | 213.7 | 131.1 | 150.3 |
Farming | Pasture, agriculture, and mosaic of agriculture and pasture | 419 | 2223.5 | 2134.5 |
Construction land | Beach and dune, urban infrastructure, rocky outcrop, and mining | 71.7 | 89.5 | 94.8 |
Other non-vegetated area (ONVA) | Land cover with exposed soils or naturally exposed rocks without soil cover | 48.3 | 89.6 | 171.8 |
Water | River, lake, and aquaculture | 674.4 | 643.9 | 860.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Lu, D.; Moran, E.; da Silva, R.F.B. Examining Water Area Changes Accompanying Dam Construction in the Madeira River in the Brazilian Amazon. Water 2020, 12, 1921. https://doi.org/10.3390/w12071921
Li D, Lu D, Moran E, da Silva RFB. Examining Water Area Changes Accompanying Dam Construction in the Madeira River in the Brazilian Amazon. Water. 2020; 12(7):1921. https://doi.org/10.3390/w12071921
Chicago/Turabian StyleLi, Dengqiu, Dengsheng Lu, Emilio Moran, and Ramon Felipe Bicudo da Silva. 2020. "Examining Water Area Changes Accompanying Dam Construction in the Madeira River in the Brazilian Amazon" Water 12, no. 7: 1921. https://doi.org/10.3390/w12071921
APA StyleLi, D., Lu, D., Moran, E., & da Silva, R. F. B. (2020). Examining Water Area Changes Accompanying Dam Construction in the Madeira River in the Brazilian Amazon. Water, 12(7), 1921. https://doi.org/10.3390/w12071921