Glacier Changes and Their Linkage to the Climate-Topographic Context in the Borohoro Mountains, Tian Shan 1977–2018
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Satellite Data
3.2. Glacier Mapping
3.3. Estimation of Elevation Change
3.4. Climate Data
3.5. Uncertainty Assessment
4. Results
4.1. Glacier Characteristics
4.2. Temporal Changes of Glacier Areas
4.3. Glacier Change and Topographic Factors
4.4. Glacier Surface Elevation Changes
4.5. Climatic Trends
5. Discussion
5.1. Comparison with Glacier Inventory Data
5.2. Comparison with Other Regions across the Tian Shan
5.3. Influence of Topo-Climatic Factors
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC (Intergovernmental Panel on Climate Change): Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/report/srocc/ (accessed on 10 January 2020).
- Moon, T. Saying goodbye to glaciers. Science 2017, 356, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Solomina, O.N.; Bradley, R.S.; Jomelli, V.; Geirsdottir, A.; Kaufman, D.S.; Koch, J.; McKay, N.P.; Masiokas, M.; Miller, G.; Nesje, A.; et al. Glacier fluctuations during the past 2000 years. Quat. Sci. Rev. 2016, 149, 61–90. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D. Asia’s glacier changes. Nat. Geosci. 2017, 10, 621–622. [Google Scholar] [CrossRef]
- Kutuzov, S.; Shahgedanova, M. Glacier retreat and climatic variability in the eastern Terskey–Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Glob. Planet. Chang. 2009, 69, 59–70. [Google Scholar] [CrossRef]
- Shi, Y. Glaciers and Related Environments in China; Science Press: Beijing, China, 2008. [Google Scholar]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Molg, T.; Bolch, T.; Vorogushyn, S.; Guntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Bolch, T. Asian glaciers are a reliable water source. Nature 2017, 545, 161. [Google Scholar] [CrossRef] [Green Version]
- Haag, I.; Jones, P.D.; Samimi, C. Central Asia’s changing climate: How temperature and precipitation have changed across time, space, and altitude. Climate 2019, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Huss, M. Extrapolating glacier mass balance to the mountain-range scale: The European Alps 1900–2100. Cryosphere 2012, 6, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ding, R.; Moore, J.C. Glacier volume and area change by 2050 in high mountain Asia. Glob. Planet. Chang. 2014, 122, 197–207. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhu, J.-J.; Li, X.; Xu, B.; Wang, Q.-J.; Huang, C.; Hu, J. Early 21st century glacier thickness changes in the Central Tien Shan. Remote Sens. Environ. 2017, 192, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, C.; Kang, E. The glacier inventory of China. Ann. Glaciol. 2009, 50, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Aizen, E.M.; Surazakov, A.B.; Kuzmichenok, V.A. Assessment of glacial area and volume change in Tien Shan (Central Asia) during the last 150 years using geodetic, aerial photo, ASTER and SRTM data. Ann. Glaciol. 2006, 43, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Glob. Planet. Chang. 2007, 56, 1–12. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Narama, C.; Kaab, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (similar to 1970), Landsat (similar to 2000), and ALOS (similar to 2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Junfeng, W.; Shiyin, L. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M. Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arct. Antarct. Alp. Res. 2012, 44, 107–121. [Google Scholar] [CrossRef]
- Bhambri, R.; Bolch, T.; Chaujar, R.K.; Kulshreshtha, S.C. Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J. Glaciol. 2011, 57, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann. Glaciol. 2006, 43, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Khromova, T.; Nosenko, G.; Kutuzov, S.; Muraviev, A.; Chernova, L. Glacier area changes in Northern Eurasia. Environ. Res. Lett. 2014, 9, 015003. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhu, A.X.; Zhang, Y.; Pei, T.; Qin, C.; Zhou, C. Glacier change over the past four decades in the middle Chinese Tien Shan. J. Glaciol. 2006, 52, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Li, Z.; Wang, C.; Huai, B. Shrinkage of Mt. Bogda glaciers of eastern Tian Shan in Central Asia during 1962–2006. J. Earth Sci. 2016, 27, 139–150. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Ding, L.; Xu, J.; Jing, L. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Prog. Nat. Sci. 2009, 19, 727–732. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, F.; Edwards, R. Glacier shrinkage in the Ebinur lake basin, Tien Shan, China, during the past 40 years. J. Glaciol. 2014, 60, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, J.; Zhang, B.; Liu, K.; Chen, Y.; Zheng, Y. Geochronology and geochemistry of the Borohoro pluton in the northern Yili Block, NW China: Implication for the tectonic evolution of the northern West Tianshan orogen. J. Asian Earth Sci. 2018, 153, 154–169. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Allen, M.B.; Han, C. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Yao, J.; Bayin, C.; Zhu, Y. Hydrological Response of Runoff to Climate Change of Typical Tributaries in Ebinur Lake Basin of Xinjiang. Water Resour. 2018, 45, 160–168. [Google Scholar] [CrossRef]
- Zhang, B.; Mo, S.; Wu, H.; Xiao, F. Digital spectra and analysis of altitudinal belts in Tianshan Mountains, China. J. Mt. Sci. 2004, 1, 18–28. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, F.; Li, H.; Wang, P. Glacier changes from 1964 to 2004 in the Jinghe River Basin, Tien Shan. Cold Reg. Sci. Technol. 2014, 102, 78–83. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using Sentinel-2. part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Winsvold, S.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Sharma, M.C. Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya, India. J. Glaciol. 2019, 65, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Yao, T.; Kang, S.; Buchroithner, M.F.; Scherer, D.; Maussion, F.; Huintjes, E.; Schneider, C. A glacier inventory for the western Nyainqentanglha range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 2010, 4, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Schutz, R.; Hancock, D.; Dimarzio, J. GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5), Version 33; NASA National Snow and Ice Data Center DAAC: Boulder, CO, USA, 2014. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef] [Green Version]
- Treichler, D.; Kääb, A.; Salzmann, N.; Xu, C.Y. Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. Cryosphere 2019, 13, 2977–3005. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Ding, X.; Song, C. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ. 2015, 168, 13–23. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Treichler, D.; Kääb, A. ICESat laser altimetry over small mountain glaciers. Cryosphere 2016, 10, 2129–2146. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska. Cryosphere 2011, 5, 1127–1133. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1900–2017). 2018. Available online: http://climate.geog.udel.edu/~climate/html_pages/d (accessed on 3 October 2019).
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Granshaw, F.D.; Fountain, A.G. Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol. 2006, 52, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Osmonov, A.; Bolch, T.; Xi, C.; Kurban, A.; Guo, W. Glacier characteristics and changes in the Sary-jaz river basin (Central Tien Shan, Kyrgyzstan)—1990–2010. Remote Sens. Lett. 2013, 4, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, R.J.; Raper, S.C.B. Estimating equilibrium-line altitude (ELA) from glacier inventory data. Ann. Glaciol. 2009, 50, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y. Topographic and geometric controls on glacier changes in the central Tien Shan, China, since the Little Ice Age. Ann. Glaciol. 2014, 55, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.K.; Shukla, A.; Jasrotia, A.S. Influence of topography on glacier changes in the central Himalaya, India. Glob. Planet. Chang. 2017, 155, 196–212. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Lu, X.; Harbor, J. Geomorphometric Controls on Mountain Glacier Changes Since the Little Ice Age in the Eastern Tien Shan, Central Asia. Ann. Am. Assoc. Geogr. 2017, 107, 284–298. [Google Scholar] [CrossRef]
- Pan, C.G.; Pope, A.; Kamp, U.; Dashtseren, A.; Walther, M.; Syromyatina, M.V. Glacier recession in the Altai Mountains of Mongolia in 1990–2016. Geogr. Ann. Ser. A Phys. Geogr. 2018, 100, 185–203. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Hillslope-glacier coupling: The interplay of topography and glacial dynamics in High Asia. J. Geophys. Res. Earth Surf. 2011, 116, F02019. [Google Scholar] [CrossRef]
- Evans, I.S. Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology 2006, 73, 166–184. [Google Scholar] [CrossRef]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Chang. 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Y.; Shangguan, D.; Zhang, Y.; Li, J.; Han, H.; Wang, J.; Xie, C. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann. Glaciol. 2006, 43, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.; Zhang, M.; Li, Z.; Wang, S.; Du, M.; Wang, P.; Wang, J.; Zhou, P. Quantitative evaluation of glacier change and its response to climate change in the Chinese Tien Shan. Cold Reg. Sci. Technol. 2018, 153, 144–155. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, S.; Liu, Y. Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72–2001/02. Ann. Glaciol. 2009, 50, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F.; Ren, J.W. Glacier recession and lake shrinkage indicating a climatic warming and drying trend in central Asia. Ann. Glaciol. 1990, 14, 261–265. [Google Scholar]
- Owen, L.A.; Finkel, R.C.; Barnard, P.L.; Ma, H.Z.; Asahi, K.; Caffee, M.W.; Derbyshire, E. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by Be-10 cosmogenic radionuclide surface exposure dating. Quat. Sci. Rev. 2005, 24, 1391–1411. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Nikitin, S.A. Glacier regime on the northern slope of the Himalaya (Xixibangma glaciers). Quat. Int. 2002, 97, 27–39. [Google Scholar] [CrossRef]
- Rupper, S.; Roe, G. Glacier changes and regional climate: A mass and energy balance approach. J. Clim. 2008, 21, 5384–5401. [Google Scholar] [CrossRef]
- Bahr, D.B.; Pfeffer, W.T.; Sassolas, C.; Meier, M.F. Response time of glaciers as a function of size and mass balance: 1. Theory. J. Geophys. Res. Solid Earth 1998, 103, 9777–9782. [Google Scholar] [CrossRef]
- Grudd, H. Small glaciers as sensitive indicators of climatic fluctuations. Geogr. Ann. Ser. A 1990, 72, 119–123. [Google Scholar] [CrossRef]
- Meier, M.F.; Dyurgerov, M.B.; McCabe, G.J. The health of glaciers: Recent changes in glacier regime. Clim. Chang. 2003, 59, 123–135. [Google Scholar] [CrossRef]
- De Angelis, H. Hypsometry and sensitivity of the mass balance to changes in equilibrium-line altitude: The case of the Southern Patagonia Icefield. J. Glaciol. 2014, 60, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Dozier, J. Climatic and hydrologic changes in the Tien Shan, central Asia. J. Clim. 1997, 10, 1393–1404. [Google Scholar] [CrossRef]
- Chen, F.-H.; Chen, J.-H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.-L.; Brooks, S.J.; Zhang, J.-W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Cruz, R.V.; Harasawa, H.; Lal, M.; Wu, S. Chapter 10 Asia: Climate Change 2007: Impacts. In Adaptation and Vulnerability IPCC Fourth Assessment Report: Working Group II Report; Cambridge University Press: Cambridge, UK, 2007; pp. 469–506. [Google Scholar]
- Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Song, S.; Bai, J. Increasing winter precipitation over arid central Asia under global warming. Atmosphere 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
Satellite | Sensor | Path/Row or Tile No. | Date | Spatial Resolution (m) | Source |
---|---|---|---|---|---|
Hexagon/KH-9 | - | - | 26 September1977 | ~8 | U.S. Geological Survey (USGS) |
Landsat 5 | TM | 145/29 | 22 August 1994 | 30 | USGS |
Landsat 5 | TM | 145/29 | 10 August 2007 | 30 | USGS |
Sentinel 2A | MSI | T44TQP | 20 August 2018 | 10, 20 | USGS |
Shuttle Radar Topography Mission (SRTM) DEM | - | - | February 2000 | ~30 | USGS |
Ice, Cloud, and Land Elevation Satellite (ICESat)-GLAH14 | - | 2003–2009 | - | National Snow and Ice Data Center (NSIDC) | |
U Delaware Air Temperature and Precipitation | 43.75° N, 83.75° E (grid center) | Monthly, January 1900–December 2017 | 0.5° × 0.5° (lat. × long.) | National Oceanic and Atmospheric Administration (NOAA) |
Properties | Size Class (km2) | |||||
---|---|---|---|---|---|---|
Total | 0.0–0.5 | 0.5–1.0 | 1.0–5.0 | 5.0–10.0 | 10.0–20.0 | |
Number of glaciers | 224 | 157 | 22 | 35 | 6 | 4 |
Total Area (km2) | 215.8 ± 4.1 | 23.3 ± 0.1 | 16.3 ± 0.1 | 73.6 ± 1.0 | 41.3 ± 1.5 | 61.3 ± 1.8 |
Average Median Elevation (m) | 3797 ± 231 | 3813 ± 251 | 3754 ± 181 | 3760 ± 187 | 3721 ± 76 | 3809 ± 77 |
Average Elevation Range (m) | 429 ± 285 | 307 ± 168 | 593 ± 201 | 711 ± 317 | 844 ± 139 | 1221 ± 220 |
Average Min. Elevation (m) | 3585 ± 230 | 3656 ± 205 | 3507 ± 132 | 3407 ± 226 | 3344 ± 65 | 3176 ± 90 |
Average Max. Elevation (m) | 4014 ± 284 | 3962 ± 282 | 4100 ± 245 | 4117 ± 261 | 4188 ± 158 | 4397 ± 187 |
Average Mean Slope (°) | 25.2 ± 10.6 | 28.3 ± 10.3 | 22.2 ± 7.4 | 16.9 ± 7.1 | 12.7 ± 2.2 | 10.7 ± 1.6 |
Average Aspect (°) | 5.0 ± 68.7 | 0.3 ± 60.6 | 18.7 ± 39.6 | 7.8 ± 93.0 | 1.1 ± 69.9 | 91.7 ± 26.9 |
Average Hypsometric Integral | 0.5 ± 0.10 | 0.5 ± 0.10 | 0.4 ± 0.08 | 0.5 ± 0.09 | 0.5 ± 0.05 | 0.5 ± 0.07 |
Year | No. | Total Area (km2) | Period | ΔA (km2) | ΔA (%) | ΔA/year (%) |
---|---|---|---|---|---|---|
1977 | 200 | 287.5 ± 8.2 | 1977–2018 | 71.6 ± 9.2 | 24.9 ± 3.2 | 0.61 ± 0.01 |
1994 | 218 | 262.5 ± 6.6 | 1977–1994 | 25.0 ± 10.5 | 8.7 ± 3.7 | 0.51 ± 0.03 |
2007 | 221 | 231.7 ± 6.0 | 1994–2007 | 30.8 ± 8.9 | 11.7 ± 3.4 | 0.90 ± 0.07 |
2018 | 224 | 215.8 ± 4.1 | 2007–2018 | 15.8 ± 7.3 | 6.8 ± 3.1 | 0.62 ± 0.06 |
Acquisition Date | 3000–3500 m a.s.l. | 3500–4000 m a.s.l. | 4000–4500 m a.s.l. | |||
---|---|---|---|---|---|---|
Rate (m year−1) | Count | Rate (m year−1) | Count | Rate (m year−1) | Count | |
20 October 2003 | −0.90 | 5 | 0.14 | 17 | 2.52 | 3 |
20 February 2004 | −0.56 | 22 | 0.19 | 18 | - | 0 |
25 October 2005 | −2.02 | 10 | 0.29 | 15 | - | 0 |
25 February 2006 | −0.75 | 6 | −0.21 | 19 | 0.23 | 4 |
28 October 2006 | −1.01 | 7 | −0.14 | 17 | −0.65 | 5 |
6 October 2007 | −1.15 | 6 | 0.03 | 18 | 1.09 | 7 |
7 October 2008 | −1.80 | 7 | −0.76 | 21 | - | 0 |
4 October 2009 | −1.04 | 4 | −0.39 | 8 | 0.66 | 5 |
Location | Investigated Period | Number/Total Area (km2) of Glaciers | Change Rate (% year−1) | Reference |
---|---|---|---|---|
Eastern Terskey Alatau | 1965–2003 | 109/120 in 1965 | 0.32 | [6] Kutuzov and Shahgedanova 2009 |
Zailiyskiy and Kungey | 1955–1999 | 192/243.5 in 1955 | 0.72 | [20] Bolch 2007 |
Pskem | ~1970–2000 | 525/168.7 in 2007 | 0.63 | [22] Narama et al., 2010 |
Ili-Kungoy | ~1970–2000 | 735/564.2 in 2007 | 0.40 | |
At-Bashy | ~1970–2000 | 192/95.7 in 2007 | 0.40 | |
SE-Fergana | ~1970–2000 | 306/171.7 in 2007 | 0.30 | |
Bogeda | 1962–2006 | 203/144.1 in 1962 | 0.48 | [30] Li et al., 2016 |
Ebinur Lake Basin | 1964–2004 | 446/366.3 in 2004 | 0.37 | [32] Wang et al., 2014 |
Jinghe River Basin | 1964–2004 | 91/77.4 in 2004 | 0.38 | [37] Wang et al., 2014 |
Akshiirak | 1977–2003 | 178/317.6 in 2003 | 0.32 | [61] Aizen et al., 2007 |
Ala Archa | 1981–2003 | 48/36.31 in 2003 | 0.46 | |
Aksu River Basin | 1963–1999 | 247/1760.7 in 1963 | 0.10 | [62] Liu et al., 2006 |
Karlik | 1971/72–1992 | 122/126 in 1972 | 0.13 | [64] Wang et al., 2009 |
1992–2001/02 | ?/122.7 in 1992 | 0.27 | ||
Borohoro | 1977–2018 | 224/215.8 in 2018 | 0.61 | This study |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y. Glacier Changes and Their Linkage to the Climate-Topographic Context in the Borohoro Mountains, Tian Shan 1977–2018. Water 2020, 12, 1502. https://doi.org/10.3390/w12051502
Li Y. Glacier Changes and Their Linkage to the Climate-Topographic Context in the Borohoro Mountains, Tian Shan 1977–2018. Water. 2020; 12(5):1502. https://doi.org/10.3390/w12051502
Chicago/Turabian StyleLi, Yanan. 2020. "Glacier Changes and Their Linkage to the Climate-Topographic Context in the Borohoro Mountains, Tian Shan 1977–2018" Water 12, no. 5: 1502. https://doi.org/10.3390/w12051502