Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of GP-Treated Water (GPTW)
2.2. Physicochemical Studies of GPTW
2.2.1. pH
2.2.2. Conductivity
2.2.3. Surface Tension
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Water Density
2.2.6. FTIR-ATR (Fourier Transformation Infrared—Attenuated Total Reflectance) Spectra
2.2.7. ESR (Electron Spin Resonance) Spectra
2.2.8. UV/VIS (Ultraviolet/Visible) Absorption Spectra
2.2.9. Raman Spectra
- -
- Control distilled water stored in contact with the air,
- -
- Control distilled water saturated with deoxygenated nitrogen
- -
- Distilled water saturated with deoxygenated nitrogen exposed to GP for 5, 15, 30, 60 and 90 min.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaplin, M.F. A proposal for the structuring of water. Biophys. Chem. 2000, 83, 211–221. [Google Scholar] [CrossRef]
- Clary, D.C. Quantum dynamics in the smallest water droplet. Science 2016, 351, 1267–1268. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, M. Water Structure and Science. Available online: www.1.lsbu.ac.uk/water/water_vibrational_spectrum.html (accessed on 12 December 2016).
- Chen, Z.; Krasik, Y.E.; Cousens, S.; Ambujakshan, A.; Corr, C.; Dai, X.J. Generation of underwater discharges inside gas bubbles using a 30-needles-to-plate electrode. J. Appl. Phys. 2017, 122, 153303. [Google Scholar] [CrossRef]
- Hayashi, Y.; Takada, N.; Kanda, H.; Goto, M. Generation of pulsed discharge plasma in water with fine bubbles. Proc. APS Gaseous Conf. 2015, LW1, 123. [Google Scholar]
- Khristolubova, V.I.; Kashapov, N.F.; Shaekhov, M.F. Gas and plasma dynamics of RF discharge jet of low-pressure in a vacuum chamber with flat electrodes and inside tube, Influence of RF discharge on the steel surface parameters. IOP Conf. Ser. Mater. Sci. Eng. 2016, 134, 012017. [Google Scholar] [CrossRef] [Green Version]
- Muradia, S.; Nagatsu, M. Low-voltage pulsed plasma discharges inside water using a bubble self-generating parallel plate electrode with a porous ceramic. Appl. Phys. Lett. 2013, 102, 144105. [Google Scholar] [CrossRef]
- Miichi, T.; Hayashi, N.; Ihara, S.; Satoh, S.; Yamade, C. Ozone generation inside bubbles in water. IEEJ Trans. Fund. Mater. 2001, 121, 448–452. [Google Scholar] [CrossRef]
- Sato, K.; Yasuoka, K.; Ishii, S. Water Treatment with Pulsed Plasmas Generated Inside Bubbles. Ieej Trans. Fundam. Mater. 2008, 128, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Levko, D.; Raja, L.L.; Cha, M.S. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions. J. Phys. D: Appl. Phys. 2016, 49, 395205. [Google Scholar] [CrossRef]
- Shang, K.; Li, J.; Wang, X.; Yao, D.; Lu, N.; Jiang, N.; Wu, Y. Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge. Jpn. J. Appl. Phys. 2015, 55, 01AB02. [Google Scholar] [CrossRef]
- Sommers, B.; Foster, J. Plasma formation inside deformed gas bubbles submerged in water. In Proceedings of the American Physical Society, 65th Annual Gaseous Electronics Conference, Austin, TX, USA, 22–26 October 2012. [Google Scholar]
- Takahashi, K.; Takeda, M.; Konno, R.; Takaki, K.; Satta, N. Influence of Electric Parameters on Hydroxyl Radical Production by Positive Pulsed Discharge Inside of a Bubble in Water. IEEE Trans. Plasma Sci. 2018, 47, 1105–1113. [Google Scholar] [CrossRef]
- Takahashi, K.; Yagi, I.; Takaki, K.; Satta, N. Development of Pulsed Discharge Inside Bubble in Water. Ieee Trans. Plasma Sci. 2011, 39, 2654–2655. [Google Scholar] [CrossRef]
- Verreycken, T.; Schram, D.C.; Leys, C.; Bruggeman, P.J. Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases. Plasma Sources Sci. Technol. 2010, 19, 45004. [Google Scholar] [CrossRef]
- Yui, H.; Someya, Y.; Kusama, Y.; Kanno, K.; Banno, M. Atmospheric discharge plasma in aqueous solution: Importance of the generation of water vapor bubbles for plasma onset and physicochemical evolution. J. Appl. Phys. 2018, 124, 103301. [Google Scholar] [CrossRef]
- Doughty, D.A.; Hartog, E.A.D.; Lawler, J.E. Current balance at the surface of a cold cathode. Phys. Rev. Lett. 1987, 58, 2668–2671. [Google Scholar] [CrossRef]
- Iwabuchi, M.; Wada, K.; Takahashi, K.; Takaki, K.; Satta, N. Influence of Pulse Width on Decolorization Efficiency of Organic Dye by Discharge Inside Argon Bubble in Water. IEEJ Trans. Fundam. Mater. 2015, 135, 437–438. [Google Scholar] [CrossRef]
- Liu, J.; He, B.; Chen, Q.; Li, J.; Xiong, Q.; Yue, G.; Zhang, X.; Yang, S.; Liu, H.; Liu, Q.H. Direct synthesis of hydrogen peroxide from plasma-water interactions. Sci. Rep. 2016, 6, 38454. [Google Scholar] [CrossRef]
- Iwabuchi, M.; Takahashi, K.; Takaki, K.; Satta, N. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water. Jpn. J. Appl. Phys. 2016, 55, 07LF02. [Google Scholar] [CrossRef] [Green Version]
- Nemcova, L.; Nikiforov, A.; Leys, C.; Krcma, F. Chemical efficiency of {H}_{2}{O}_{2} production and decomposition of organic compounds under action of DCC under water discharge in gas bubbles. IEEE Trans Plasma Sci. 2011, 39, 865–870. [Google Scholar] [CrossRef]
- Pranevicius, L.; Tuckute, S.; Gedvilas, K. Water Vapor-Plasma-Enhanced Oxidation of Thin Titanium Films. Acta Phys. Pol. A 2013, 123, 907–910. [Google Scholar] [CrossRef]
- Hagen, R. Plasma-Treated Water as a Superior Electrolyte. Available online: https://www.advancedsciencenews.com/plasma-treated-water-superior-electrolyte/ (accessed on 3 July 2017).
- Białopiotrowicz, T.; Ciesielski, W.; Domański, J.; Doskocz, M.; Fiedorowicz, M.; Grąż, K.; Khachatryan, K.; Kołoczek, H.; Kozak, A.; Oszczęda, Z.; et al. Structure and physicochemical properties of water treated with low-temperature low-frequency plasma. Curr. Phys. Chem. 2016, 6, 312–320. [Google Scholar]
- Lu, P.; Cullen, P.J.; Ostrikov, K. Atmospheric Pressure Nonthermal Plasma Sources. In Cold Plasma in Food and Agriculture; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 83–116. [Google Scholar]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; E Gardeniers, J.G.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Marić, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 53002. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Iza, F.; Brandenburg, R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017, 26, 123002. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, M.; Oszczęda, Z.; Tomasik, P. Water treated with low-temperature, low-pressure, low-frequency glow plasma as a stimulant of pathogenicity and reproduction of biopesticides. Part I. Entomopathogenic fungi. Pol. J. Nat. Sci. 2018, 33, 561–568. [Google Scholar]
- Murawski, M.; Schwarz, T.; Grygier, J.; Patkowski, K.; Oszczęda, Z.; Jelkin, I.; Kosiek, A.; Gruszecki, T.M.; Szymanowska, A.; Skrzypek, T.; et al. The utility of nanowater for ram semen cryopreservation. Exp. Boil. Med. 2014, 240, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Szymanowicz, J.; Schwartz, T.; Murawski, M.; Małopolska, M.; Oszczęda, Z.; Tuz, R.; Nowicki, J.; Bartkowski, P.M. Storage, of bear semen at 16-18ଌ in thew long term commercial extender prepared witg deionized water or nanowater. Anim. Reprod. 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Pater, A.; Zdaniewicz, M.; Satora, P.; Khachatryan, G.; Oszczęda, Z. Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma for Quality Improvement of Barley and Malt. Biomolecules 2020, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P.; Systems, B.N.N. Cultivation of Peppermint (Mentha Piperita Rubescens) Using Water Treated With Low-Pressure, Low-Temperature Glow Plasma Of Low Frequency. Electron. J. Pol. Agric. Univ. 2018, 21, 1. [Google Scholar] [CrossRef]
- Tomasik, P.; Oszczęda, Z. Applications of water treated with low-pressure, low- temperature glow plasma (nanowater) in food and cosmetic technology. Prom. Zdr. Ekol. 2019, 4, 21–28. (In Polish) [Google Scholar]
- Tomasik, P. Essentials of Nanotechnology in Food Technology and Cosmetics; Sophia Scientific Editorial Board: Warsaw, Poland, 2019. (In Polish) [Google Scholar]
- Oszczęda, Z.; Elkin, I.; Stręk, W. Equipment for Treatment of Water with Plasma. Polish Patent PL 216025 B1 28 February 2014. [Google Scholar]
- Reszke, E.; Yelkin, I.; Oszczęda, Z. Plasming Lamp with Power Supply. Polish Patent PL 227530 B1 26 October 2017. [Google Scholar]
- Federal Communications Commission, Interference Handbook. Available online: https://web.archive.org/web/20131016064153/http://www.kyes.com/antenna/interference/tvibook (accessed on 11 March 2020).
- Prahl, S. Optical Absorption of Water. Available online: http://omlc.ogi.edu/spectra/water/index.html2001 (accessed on 7 December 2017).
- Vieitez, M.; Ivanov, T.I.; Ubachs, W.; Lewis, B.R.; De Lange, C. On the complexity of the absorption spectrum of molecular nitrogen. J. Mol. Liq. 2008, 141, 110–117. [Google Scholar] [CrossRef]
- Tokushima, T.; Harada, Y.; Takahashi, O.; Senba, Y.; Ohashi, H.; Pettersson, L.G.M.; Nilsson, A.; Shin, S. High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem. Phys. Lett. 2008, 460, 387–400. [Google Scholar] [CrossRef]
- Engineering Tool Box. Available online: http://www.engineeringtoolboc.com/gases-solubility-water_1148.html (accessed on 20 January 2019).
- Golde, M.F.; Thrush, B.A. Formation of excited states of N2 from ground state nitrogen atoms. Faraday Discuss. Chem. Soc. 1972, 53, 52. [Google Scholar] [CrossRef]
- Kirillov, A.S. Electronically excited molecular nitrogen and molecular oxygen in the high-latitude upper atmosphere. Ann. Geophys. 2008, 26, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Ramya, K.R.; Venkathathan, A. Density functional theory study of oxygen clathrate hydrates. Indian J. Chem. 2013, 52A, 1063–1065. [Google Scholar]
Water a | Mass (mg) | Density (g/cm3) b | pH | Conductivity (µS/cm) | Surface Tension (mN/m) |
---|---|---|---|---|---|
W | 11.95 ± 0.15 | 0.995833 | 5.95 | 3.103 ± 0.008 | 64.99 ± 0.30 |
WN0 | 11.80 ± 0.20 | 0.983333 | 6.68 | 2.353 ± 0.007 | 68.28 ± 0.39 |
WN5 | 12.95 ± 0.15 | 1.079167 | 6.72 | 2.220 ± 0.010 | 69.22 ± 0.32 |
WN15 | 11.90 ± 0.30 | 0.991667 | 6.68 | 2.647 ± 0.007 | 61.91 ± 0.22 |
WN30 | 12.15 ± 0.05 | 1.012500 | 6.57 | 2.343 ± 0.007 | 67.46 ± 0.25 |
WN60 | 11.30 ± 0.10 | 0.950000 | 6.62 | 2.483 ± 0.006 | 59.91 ± 0.61 |
WN90 | 12.00 ± 0.25 | 0.979167 | 6.59 | 2.430 ± 0.010 | 61.73 ± 0.18 |
Sample b | Band Intensity | Intensity Ratio | ||||
---|---|---|---|---|---|---|
A (3494 cm−1) | B (3265 cm−1) | C (1633 cm−1) | A/B | A/C | B/C | |
W | 0.0642 | 0.3266 | 0.1633 | 0.197 | 0.393 | 2.000 |
WN0 | 0.0810 | 0.3403 | 0.1732 | 0.238 | 0.468 | 1.965 |
WN5 | 0.0711 | 0.3305 | 0.1693 | 0.215 | 0.420 | 1.952 |
WN15 | 0.0721 | 0.3323 | 0.1693 | 0.217 | 0.426 | 1.963 |
WN30 | 0.0681 | 0.3294 | 0.1693 | 0.207 | 0.402 | 1.946 |
WN60 | 0.0730 | 0.3315 | 0.1703 | 0.220 | 0.429 | 1.947 |
WN90 | 0.0780 | 0.3333 | 0.1703 | 0.234 | 0.458 | 1.957 |
Sample b | Freezing | Melting | Evaporating | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1onset | T1mid | T1end | Area1 | T2onset | T2mid | T2end | Area2 | T3onset | T3mid | T3end | Area3 | |
W | −20.6 | −21.5 | −25.4 | −281.1 | 0.1 | 11.0 | 16.8 | −355.9 | 100.9 | 125.0 | 128.8 | −2075.5 |
WN0 | −20.6 | −21.4 | −25.0 | −284.2 | 0.1 | 10.9 | 16.1 | −361.2 | 101.0 | 124.2 | 128.0 | −2149.5 |
WN5 | −19.4 | −20.3 | −24.1 | −297.0 | 0.2 | 11.0 | 16.2 | −373.9 | 101.1 | 124.9 | 128.9 | −2174.0 |
WN15 | −18.4 | −19.1 | −23.9 | −303.4 | 0.2 | 10.2 | 15.7 | −379.0 | 101.1 | 123.9 | 127.6 | −2207.0 |
WN30 | −20.7 | −21.3 | −24.8 | −294.0 | 0.1 | 10.5 | 16.1 | −374.6 | 100.7 | 124.0 | 127.8 | −2194.0 |
WN60 | −20.7 | −21.4 | −24.5 | −304.8 | 0.1 | 10.1 | 15.0 | −385.2 | 101.1 | 123.2 | 127.0 | −2271.0 |
WN90 | −19.2 | −19.9 | −23.4 | −303.3 | 0.1 | 10.5 | 15.3 | −379.8 | 100.9 | 123.3 | 127.0 | −2232.5 |
Sample a | Cp | ΔH | ΔS | |||
---|---|---|---|---|---|---|
J/gK | J/molK | J/g | J/mol | J/g K | J/molK | |
W | 0.363 | 0.026 | −2075.5 | −115.306 | 3.94362 | 0.219090 |
WN0 | 11.523 | 0.823 | −2149.5 | −119.417 | 3.95231 | 0.219573 |
WN5 | 13.254 | 0.947 | −2174.0 | −120.778 | 3.85214 | 0.214008 |
WN15 | 19.235 | 1.374 | −2207.0 | -122.611 | 3.52148 | 0.195638 |
WN30 | 37.235 | 2.659 | −2194.0 | −121.889 | 3.01258 | 0.167366 |
WN60 | 30.485 | 2.177 | −2271.0 | −126.167 | 3.25483 | 0.180824 |
WN90 | 25.237 | 1.802 | −2232.5 | −124.028 | 3.35684 | 0.186491 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Tomasik, P.; Witczak, M. Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma. Water 2020, 12, 1314. https://doi.org/10.3390/w12051314
Chwastowski J, Ciesielska K, Ciesielski W, Khachatryan K, Kołoczek H, Kulawik D, Oszczęda Z, Tomasik P, Witczak M. Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma. Water. 2020; 12(5):1314. https://doi.org/10.3390/w12051314
Chicago/Turabian StyleChwastowski, Jarosław, Katarzyna Ciesielska, Wojciech Ciesielski, Karen Khachatryan, Henryk Kołoczek, Damian Kulawik, Zdzisław Oszczęda, Piotr Tomasik, and Mariusz Witczak. 2020. "Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma" Water 12, no. 5: 1314. https://doi.org/10.3390/w12051314
APA StyleChwastowski, J., Ciesielska, K., Ciesielski, W., Khachatryan, K., Kołoczek, H., Kulawik, D., Oszczęda, Z., Tomasik, P., & Witczak, M. (2020). Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma. Water, 12(5), 1314. https://doi.org/10.3390/w12051314