The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
2.2. Data and Processing
2.2.1. Satellite Images for Extracting Lake Area
2.2.2. Permafrost Data
2.2.3. Calculation of Ground Ice Content and Its Change
3. Results
3.1. Lake Expansion Pattern
3.2. Lake Expansion and Permafrost Characteristics
3.2.1. Permafrost Types
3.2.2. Ground Ice Content
3.3. Permafrost Degradation Evidence
3.4. Contribution of Permafrost Degradation to Lake Expansion
4. Discussion
4.1. Cause of Lake Expansion and Shrinkage in Permafrost
4.2. Impact of Thawing–Freezing Process on Water Contribution
4.3. Impact of Permafrost Extent and Thermal Condition on Contribution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, R.H.; Yang, G.S.; Duan, H.T.; Jiang, J.H.; Wang, S.M.; Feng, X.Z.; Li, A.N.; Kong, F.X.; Xue, B.; Wu, J.L.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Li, L.; Li, H.M.; Shen, H.Y.; Liu, C.H.; Ma, Y.C.; Zhao, Y.C. The truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2018, 40, 1079–1089. [Google Scholar]
- Yao, T.D.; Pu, J.C.; Lu, A.X.; Wang, Y.Q.; Yu, W.S. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.D.; Zhao, L.; Li, R.; Wu, X.D.; Sheng, Y.; Hu, G.J.; Zou, D.F.; Jin, H.J.; Li, X.; Wu, Q.B. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Zhang, G.Q.; Yao, T.D.; Chen, W.F.; Zheng, G.X. Regional differences of lake evolution across China during 1960-2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2018, 221, 386–404. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Piao, S.L.; Bolch, T.; Xie, H.J.; Chen, D.L.; Gao, Y.H.; O’Reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.H.; Yao, F.F.; Wang, J.D.; Luo, J.C.; Shen, Z.F.; Wang, C.; Song, C.Q. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. J. Hydrol. 2017, 552, 633–645. [Google Scholar] [CrossRef]
- Lei, Y.B.; Yang, K.; Wang, B.; Sheng, Y.W.; Bird, B.W.; Zhang, G.Q.; Tian, L.D. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Chang. 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Jiang, L.G.; Nielsen, K.; Andersen, O.B.; Bauer-Gottwein, P. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2SARIn mode data. J. Hydrol. 2017, 544, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Kleinherenbrink, M.; Lindenbergh, R.C.; Ditmar, P.G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Yao, F.F.; Wang, J.D.; Yang, K.H.; Wang, C.; Walter, B.A.; Cretaux, J.F. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 2018, 13, 064011. [Google Scholar] [CrossRef]
- Yang, R.M.; Zhu, L.P.; Wang, J.B.; Ju, J.T.; Ma, Q.F.; Turner, F.; Guo, Y. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Chang. 2017, 140, 621–633. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Shum, C.K.; Yi, S.A.; Yang, K.; Xie, H.J.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateaus endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Li, Y.K.; Liao, J.G.; Guo, H.D.; Liu, Z.W.; Shen, G.Z. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972–2010. PLoS ONE 2014, 9, e111890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.Q.; Huang, B.; Richards, K.; Ke, L.H.; Phan, V.H. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Lu, H.; Yue, S.Y.; Zhang, G.Q.; Lei, Y.B.; La, Z.; Wang, W. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Clim. Chang. 2018, 147, 1–15. [Google Scholar] [CrossRef]
- Song, C.Q.; Sheng, Y.W. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Clim. Chang. 2016, 135, 493–507. [Google Scholar] [CrossRef]
- Phan, V.H.; Lindenbergh, R.C.; Menenti, M. Geometric dependency of Tibetan lakes on glacial runoff. Hydrol. Earth Syst. Sci. 2013, 17, 4061–4077. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.F.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.J.; Wu, T.H.; Wu, J.C.; Xie, C.W.; Wu, X.D.; Pang, Q.Q.; et al. A new map of the permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ding, Y.J.; Liu, G.Y.; Wang, S.L.; Jin, H.J. Estimates of the reserves of ground ice in permafrost regions on the Tibetan Plateau. J. Glaciol. Geocryol. 2010, 32, 1–9. [Google Scholar]
- Xie, C.W.; Zhao, L.; Wu, T.H.; Dong, X.C. Changes in the thermal and hydraulic regime within the active layer in the Qinghai-Tibet Plateau. J. Mt. Sci. 2012, 9, 483–491. [Google Scholar] [CrossRef]
- Wu, Q.B.; Zhang, T.J. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. 2008, 113, D13108. [Google Scholar] [CrossRef]
- Qin, Y.H.; Wu, T.H.; Zhao, L.; Wu, X.D.; Li, R.; Xie, C.W.; Pang, Q.Q.; Hu, G.J.; Qiao, Y.P.; Zhao, G.H.; et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 11604–11620. [Google Scholar] [CrossRef]
- Xu, X.M.; Wu, Q.B.; Zhang, Z.Q. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change. J. Glaciol. Geocryol. 2017, 39, 1–8. [Google Scholar]
- Li, R.; Zhao, L.; Ding, Y.J.; Wu, T.H.; Xiao, Y.; Du, E.J.; Liu, G.Y.; Qiao, Y.P. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhu, X.D.; Wang, Q.C.; Wang, Z.Y. Mapping and analyses of permafrost change in the Qinghai Plateau using GIS. J. Glaciol. Geocryol. 2005, 27, 320–328. [Google Scholar]
- Liu, G.Y.; Zhao, L.; Xie, C.W.; Pang, Q.Q.; Du, E.J.; Qiao, Y.P. Variation characteristics and impact factors of the depth of zero annual amplitude of ground temperature in permafrost regions on the Tibetan Plateau. J. Glaciol. Geocryol. 2016, 38, 1189–1200. [Google Scholar]
- Xie, C.W.; William, A.G.; Zhao, L.; Wu, T.H.; Liu, W.H. Temperature-dependent adjustments of the permafrost thermal profiles on the Qinghai-Tibet Plateau, China. Arct. Antarct. Alp. Res. 2015, 47, 719–728. [Google Scholar]
- Liao, C.; Zhuang, Q.L. Quantifying the role of permafrost distribution in groundwater and surface water interactions using a three-dimensional hydrological model. Arct. Antarct. Alp. Res. 2017, 49, 81–100. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost-a review. Vadose Zone J. 2016, 15, 1–20. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.B.; McKenzie, J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth Sci. Rev. 2014, 138, 313–334. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Voss, C.I.; Wellman, T.P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res. 2012, 48, W07524. [Google Scholar] [CrossRef]
- St Jacques, J.M.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36, 329–342. [Google Scholar] [CrossRef]
- Song, C.L.; Wang, G.X.; Mao, T.X.; Dai, J.C.; Yang, D.Q. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Sci. China Earth Sci. 2019, 62, 292–302. [Google Scholar] [CrossRef]
- Wang, X.Q.; Chen, R.S.; Han, C.T.; Yang, Y.; Liu, J.F.; Liu, Z.W. Changes in river discharge in typical mountain permafrost catchments, northwestern China. Quat. Int. 2019, 519, 32–41. [Google Scholar] [CrossRef]
- Wang, X.Q.; Chen, R.S.; Yang, Y. Effects of permafrost degradation on the hydrological regime in the source regions of the Yangtze and Yellow rivers, China. Water 2017, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Ye, B.S.; Li, J.; Sheng, Y. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China. Sci. China Earth Sci. 2011, 54, 615–624. [Google Scholar] [CrossRef]
- Ye, B.S.; Yang, D.Q.; Zhang, Z.Q.; Kane, D.L. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J. Geophys. Res. 2009, 114, D07102. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Feng, Q.; Wang, Q.J.; Yong, S.; Cheng, A.F.; Li, J.G. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China. Glob. Planet. Chang. 2016, 136, 41–51. [Google Scholar]
- Li, Z.X.; Feng, Q.; Liu, W.; Wang, T.T.; Cheng, A.F.; Gao, Y.; Guo, X.Y.; Pan, Y.H.; Li, J.G.; Guo, R.; et al. Study on the contribution from cryosphere to runoff in the cold alpine basin: A case study of Hulugou River basin in the Qilian Mountains. Glob. Planet. Chang. 2014, 122, 345–361. [Google Scholar]
- Gui, J.; Li, Z.X.; Feng, Q.; Zhang, D.D.; Lv, Y.M.; Yuan, R.F. Characteristics of runoff components in the Gulang River basin of the Qilian Mountains. J. Glaciol. Geocryol. 2019, 41, 918–925. [Google Scholar]
- Xie, C.W.; William, A.G. A simple thaw-freeze algorithm for a multi layered soil using the Stefan equation. Permafr. Periglac. Process. 2013, 24, 252–260. [Google Scholar]
- Liu, W.H.; Xie, C.W.; Zhao, L.; Wu, T.H.; Li, R.; Wang, W.; Qiqo, Y.P. Simulating the active layer depth and analyzing its influence factors in permafrost of the Mahan Mountain, Lanzhou. J. Glaciol. Geocryol. 2015, 37, 1443–1452. [Google Scholar]
- Wang, Z.W.; Wang, Q.; Zhao, L.; Wu, X.D.; Yue, G.Y.; Zou, D.F.; Nan, Z.T.; Liu, G.Y.; Pang, Q.Q.; Fang, H.B.; et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J. Mt. Sci. 2016, 6, 87–98. [Google Scholar] [CrossRef]
- Xu, X.Z.; Wang, J.C.; Zhang, L.X. Physics of Frozen Soil; Science Press: Beijing, China, 2010; pp. 200–237. [Google Scholar]
- Cheng, G.D.; Wang, S.L. On the zonation of high-altitude permafrost in China. J. Glaciol. Geocryol. 1982, 4, 1–17. [Google Scholar]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q. Geocryology in China; Science Press: Beijing, China, 2000; pp. 92–108. [Google Scholar]
- Wu, Q.B.; Zhang, T.J.; Liu, Y.Z. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob. Planet. Chang. 2010, 72, 32–38. [Google Scholar] [CrossRef]
- Xiang, L.W.; Wang, H.S.; Steffen, H.; Wu, P.; Jia, L.L.; Jiang, L.M.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Liu, J.Y.; Shao, Q.Q.; Liu, R.G. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau. Clim. Chang. 2011, 109, 479–502. [Google Scholar] [CrossRef]
- Tao, S.L.; Fang, J.Y.; Zhao, X.; Zhao, S.Q.; Shen, H.H.; Hu, H.F.; Tang, Z.Y.; Wang, Z.H.; Guo, Q.H. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.W.; Xiao, X.M.; Liu, R.G.; Zou, Z.H.; Zhao, G.S.; Ge, Q.S. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Wang, G.X.; Hu, H.C.; Li, T.B. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- Woo, M.K.; Kane, D.L.; Carey, S.K.; Yang, D.Q. Progress in permafrost hydrology in the New Millennium. Permafr. Periglac. Process. 2008, 19, 237–254. [Google Scholar] [CrossRef]
- Yang, D.Q.; Robinson, D.; Zhao, Y.Y.; Estilow, T.; Ye, B.S. Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J. Geophys. Res. 2003, 108, 4578. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.W.; Macdonald, G.M.; Hinzman, L.D. Disappearing Arctic Lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [Green Version]
- Riordan, B.; Verbyla, D.; Mcguire, A.D. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images. J. Geophys. Res. Atmos. 2006, 111, G04002. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Cheng, G.D.; Jin, H.J. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes. Hydrol. Eng. Geol. 2013, 40, 1–10. [Google Scholar]
- Wu, J.C.; Sheng, Y.; Wu, Q.B.; Li, J.; Zhang, X.M. Discussion on the possibility of taking ground ice in permafrost regions as water sources under climate warming. J. Glaciol. Geocryol. 2009, 31, 350–356. [Google Scholar]
- Zhang, Y.S.; Ohataa, T.; Kadota, T. Land-surface hydrological processes in the frozen soil region of the eastern Tibetan Plateau. J. Hydrol. 2003, 283, 41–56. [Google Scholar] [CrossRef]
- Jepsen, S.M.; Voss, C.I.; Walvoord, M.A.; Minsley, B.J.; Rover, J. Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophys. Res. Lett. 2013, 40, 882–887. [Google Scholar] [CrossRef]
Location | Station Number | Longitude (°E) | Latitude (°N) | Altitude (m) | Underlying Surface Type |
---|---|---|---|---|---|
Kunlun pass | CN06 | 94.07 | 35.62 | 4746 | Alpine frost sparse steppe |
Fenghuoshan | CN01 | 92.90 | 34.73 | 4896 | Alpine frost meadow |
Kaixinling | QT05 | 92.40 | 33.95 | 4652 | Alpine frost desert steppe |
Liangdaohe | CN04 | 91.73 | 31.82 | 4808 | Alpine frost marsh meadow |
Location | Station Number | Longitude (°E) | Latitude (°N) | Altitude (m) | Underlying Surface Type |
---|---|---|---|---|---|
Xidatan | QTB01 | 94.08 | 35.71 | 4530 | Alpine frost sparse steppe |
Hoh Xil Bridge | QTB06 | 93.26 | 35.29 | 4563 | Alpine frost sparse steppe |
Wenquan | QTB15 | 91.89 | 33.09 | 4960 | Alpine frost sparse steppe |
Liangdaohe | QTB18 | 91.73 | 31.81 | 4808 | Alpine frost meadow |
Soil Type | Thermal Conductivity (W·m−1·°C−1) | Bulk Density (kg·m−3) | Gravimetric Water Content (%) |
---|---|---|---|
Sand | 1.42 | 1800 | 6 |
Silt | 1.575 | 1400 | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xie, C.; Wang, W.; Yang, G.; Zhang, Y.; Wu, T.; Liu, G.; Pang, Q.; Zou, D.; Liu, H. The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai–Tibet Plateau. Water 2020, 12, 1287. https://doi.org/10.3390/w12051287
Liu W, Xie C, Wang W, Yang G, Zhang Y, Wu T, Liu G, Pang Q, Zou D, Liu H. The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai–Tibet Plateau. Water. 2020; 12(5):1287. https://doi.org/10.3390/w12051287
Chicago/Turabian StyleLiu, Wenhui, Changwei Xie, Wu Wang, Guiqian Yang, Yuxin Zhang, Tonghua Wu, Guangyue Liu, Qiangqiang Pang, Defu Zou, and Hairui Liu. 2020. "The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai–Tibet Plateau" Water 12, no. 5: 1287. https://doi.org/10.3390/w12051287