Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy
Abstract
:1. Introduction
Wastewater Reclamation Overview in Jordan
2. Materials and Methods
2.1. Wastewater Treatment Plants in Jordan
2.2. Data Gathering and Analysis
3. Results and Discussion
3.1. Wastewater Reclamation: Current Capacity and Potential Reuse
3.1.1. Reclaimed Wastewater Production: Overview and Potentials
3.1.2. Environmental and Economic Benefits
3.2. Energy Recovery from Wastewater Reclamation
3.3. Reclaimed Wastewater Reuse: Barriers and Prospects
3.3.1. Reclaimed Wastewater Quality and Industrial Needs
3.3.2. Reclamation of Wastewater Technologies
3.3.3. Reclaimed Wastewater Supply Continuity
3.3.4. Willingness to Participate and Willingness to Pay
3.3.5. Pricing Systems
3.3.6. Reclaimed Wastewater Agreements
4. Conclusions
- Jordan is classified as a semi-arid to arid country and is ranked among the poorest countries in the world in terms of water availability. Therefore, reclaimed wastewater reuse has been driven as an alternative water supply in such looming challenges of water scarcity. For instance, a total of 26 million m3 of groundwater abstraction is exploited annually for industrial purposes.
- In the present study, the 34 processes in WWTPs in Jordan were assessed in terms of their treatment processes, scale, and effluent TDS. The most widely used technologies are AS (60%) and WSP (19%), while the TF and AS process, MBR and TF process, and OS processes were had an even use share of 6% each. Moreover, 30 WWTPs were classified as small scale (<1 × 104 m3/day), which were generally built in medium- and small-size cities and refugee camps. Moreover, the analysis showed that 17.932 million m3 of treated wastewater has low TDS < 1000 ppm and can be reused several times in most industrial applications, especially in thermal units, cooling towers, etc. However, highest annual effluents flow rate of 147.323 million m3 in total out of 18 WWTPs distributed in widely different locations in Jordan have 1000 < TDS < 1500, which can be used with medium cost depending on the fit-for-purpose water criteria.
- Full substitution of industrial demand by reclaimed wastewater reuse can be achieved in both Amman and Aqaba governorates with 13.13- and 3.36-fold, respectively. However, the shortage of industrial demand substitution by reclaimed wastewater is significantly clear in both of Ma’an and Karak governorates with substitution amounts of 2.45 and 10.4 million m3 per year, respectively.
- The environmental assessment showed positive impacts of reclaimed wastewater reuse scenario in terms of water depletion (saving of 72.55 million m3 of groundwater per year) and climate change (17.683 million kg CO2Eq reduction).
- From circular economic perspective, and based on WWTP data gathered in Jordan, having anaerobic sludge digestion in the small- and medium-scale WWTPs (<10 × 104 m3/day) can potentially produce electricity that would equate to an offset of 0.11–0.53 kWh/m3. Consequently, this may help in reducing the costs of reclaimed wastewater reuse with further treatment requirements mainly for reclaimed wastewater with TDS higher than 1000 ppm as stated before.
- It is recommended in the present study that reclaimed wastewater agreement negotiations should be promoted between the supplier of reclaimed wastewater and the customers (i.e., industries). Moreover, indicators such as willingness to participate and willingness to pay need to be significantly determined in order to reach a win–win scheme of reclaimed water pricing model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forslund, A.; Malm Renöfält, B.; Barchiesi, S.; Cross, K.; Davidson, S.; Ferrel, T.; Korsgaard, L.; Krchnak, K.; McClain, M.; Meijer, K.; et al. Securing Water for Ecosystems and Human Well-being: The Importance of Environmental Flows (Swedish Water House Report 24); Swedish International Water Institute: Stockholm, Sweden, 2009. [Google Scholar]
- Roccaro, P.; Verlicchi, P. Wastewater and reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 61–63. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.; Wu, G.; Wu, Q.; Zhang, F.; Niu, Z.; Hu, H.Y. Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. J. Clean. Prod. 2016, 131, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shannon, M.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Akhoundi, A.; Nazif, S. Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. J. Clean. Prod. 2018, 195, 1350–1376. [Google Scholar] [CrossRef]
- Chen, W.; Geng, Y.; Dong, H.; Tian, X.; Zhong, S.; Wu, Q.; Li, S. An emergy accounting based regional sustainability evaluation: A case of Qinghai in China. Ecol. Indic. 2018, 88, 152–160. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Dong, L. Influence of a large urban park on the local urban thermal environment. Sci. Total Environ. 2018, 622, 882–891. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, X.; Dong, W. Fuzzy comprehensive evaluation for safety guarantee system of reclaimed water quality. Procedia Environ. Sci. 2013, 18, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Ait-Mouheb, N.; Bahri, A.; Thayer, B.B.; Benyahia, B.; Bourrié, G.; Cherki, B.; Condom, N.; Declercq, R.; Gunes, A.; Héran, M.; et al. The reuse of reclaimed water for irrigation around the Mediterranean Rim: A step towards a more virtuous cycle? Reg. Environ. Change 2018, 8, 693–705. [Google Scholar] [CrossRef]
- Licciardello, F.; Milani, M.; Consoli, S.; Pappalardo, N.; Barbagallo, S.; Cirelli, G. Wastewater tertiary treatment options to match reuse standards in agriculture. Agric. Water Manag. 2018, 210, 232–242. [Google Scholar] [CrossRef]
- Collet, L.; Denis, R.; Borrell Estupina, V.; Dezetter, A.; Servat, E. Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment. Sci. Total Environ. 2015, 536, 589–602. [Google Scholar] [CrossRef]
- La Jeunesse, I.; Cirelli, C.; Aubin, D.; Larrue, C.; Sellami, H.; Afifi, S.; Bellin, A.; Benabdallah, S.; Bird, D.N.; Deidda, R.; et al. Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Sci. Total Environ. 2016, 543, 981–996. [Google Scholar] [CrossRef] [PubMed]
- European Environmental Agency. Climate Change, Impacts and Vulnerably in Europe—An Indicator-Based Report; European Environmental Agency (2012) EEA report no 12/2012; European Environmental Agency: København, Denmark, 2012. [Google Scholar]
- Voulvoulis, K. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Coats, E.R.; Wilson, P.I. Toward nucleating the concept of the water resource recovery facility (WRRF): Perspective from the principal actors. Environ. Sci. Technol. 2017, 51, 4158–4164. [Google Scholar] [CrossRef]
- Sgroi, M.; Vagliasindi, F.G.A.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Matouq, M.; El Hasan, T.; Al Bilbisi, H.; Abdelhadi, M.; Hindiyeh, M.; Eslaiman, S.; Duheisat, S. The climate change implication on Jordan: A case study using GIS and artificial neural networks for weather casting. J. Sci. Taibah Univ. 2013, 7, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Water and Irrigation. Jordan’s Water Strategy 2016–2025; Ministry of Water and Irrigation: Amman, Jordan, 2016. [Google Scholar]
- Aboelnga, H.; Saidan, M.; Al-Weshah, R.; Sturm, M.; Ribbe, L.; Frechen, F.B. Component analysis for optimal leakage management in Madaba, Jordan. J. Water Supply Res. Technol. 2018, 67, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Saidan, M.N.; Al-Weshah, R.A.; Obada, I. Potential Rainwater Harvesting: Adaptation Measure for Urban Areas in Jordan. Am. Water Works Assoc. 2015, 107, 594–602. [Google Scholar] [CrossRef]
- Al-Weshah, R.; Saidan, M.; Al-Omari, A. Environmental ethics as a tool for sustainable water resource management. Am. Water Works Assoc. 2016, 108, 175–181. [Google Scholar] [CrossRef]
- Al-Awad, T.K.; Saidan, M.N.; Gareau, B.J. Halon management and ozone-depleting substances control in Jordan. Int. Environ. Agreem. 2018, 18, 391–408. [Google Scholar] [CrossRef]
- Aldayyat, E.; Saidan, M.N.; Abu Saleh, M.A.; Hamdan, S.; Linton, C. Solid Waste Management in Jordan: Impacts and Analysis. J. Chem. Technol. Metall. 2019, 54, 454–462. [Google Scholar]
- Alrabie, K.; Saidan, M.N. A preliminary solar-hydrogen system for Jordan: Impacts assessment and scenarios analysis. Int. J. Hydrog. Energy 2018, 43, 9211–9223. [Google Scholar] [CrossRef]
- Khasawneh, H.; Saidan, M.; Al-Addous, M. Utilization of hydrogen as clean energy resource in chlor-alkali process. Energy Explor. Exploit. 2019, 37, 1053–1072. [Google Scholar] [CrossRef] [Green Version]
- Saidan, M. Cross-sectional survey of non-hazardous waste composition and quantities in industrial sector and potential recycling in Jordan. Environ. Nanotech. Monitor. Manag. 2019, 12, 100227. [Google Scholar] [CrossRef]
- Al-Addous, M.; Saidan, M.; Bdour, M.; Dalalah, Z.; Albatayneh, A.; Class, C.B. Key aspects and feasibility assessment of a proposed wind farm in Jordan. Int. J. Low-Carbon Technol. 2019. [Google Scholar] [CrossRef]
- Saidan, M.N.; Abu Drais, A.; Linton, C.; Hamdan, S. Solid waste Characterization and recycling in Syrian refugees hosting communities in Jordan. In Waste Management in MENA Regions, 1st ed.; Negm, A.M., Noama, E., Eds.; Earth and Environmental Sciences Series, Applied Environmental Science and Engineering for a Sustainable Future; Springer International Publishing AG, Part of Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Saidan, M.N.; Ansour, L.M.; Saidan, H. Management of Plastic Bags Waste: An Assessment of Scenarios in Jordan. J. Chem. Technol. Metall. 2017, 52, 148–154. [Google Scholar]
- Hararah, M.A.; Saidan, M.N.; Alhamamre, Z.; Abu-Jrai, A.M.; Alsawair, J.; Damra, R.A. The PCDD/PCDF emission inventory in Jordan: Aqaba city. J. Chem. Technol. Metall. 2016, 51, 112–120. [Google Scholar]
- Saidan, M.; Tarawneh, A. Estimation of potential E-waste generation in Jordan. Ekoloji 2015, 24, 60–64. [Google Scholar] [CrossRef]
- Tarawneh, A.; Saidan, M. Households awareness, behaviors, and willingness to participate in E-waste management in Jordan. Int. J. Ecosys 2013, 3, 124–131. [Google Scholar]
- Saidan, M.; Khasawneh, H.J.; Tayyem, M.; Hawari, M. Getting energy from poultry waste in Jordan: Cleaner production approach. J. Chem. Technol. Metall. 2017, 52, 595–601. [Google Scholar]
- Hindiyeh, M.; Altalafha, T.; Al-Naerat, M.; Saidan, H.; Al-Salaymeh, A.; Sbeinati, L.A.; Saidan, M.N. Process modification of pharmaceutical tablet manufacturing operations: An Ecoefficiency approach. Processes 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- METAP-World Bank. Water Quality Management Jordan—World Bank. Available online: http://siteresources.worldbank.org/EXTMETAP/Resources/WQM.JordanP.pdf (accessed on 2 October 2019).
- Salahat, M.A.; Al-Qinna, M.I.; Badran, R.A. Potential of Treated Wastewater Usage for Adaptation to Climate Change: Jordan as a Success Story. In Water Resources in Arid Areas: The Way Forward. Springer Water; Abdalla, O., Kacimov, A., Chen, M., Al-Maktoumi, A., Al-Hosni, T., Clark, I., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Carr, G.; Potter, R.B.; Nortcliff, S. Water reuse for irrigation in Jordan: Perceptions of water quality among farmers. Agric. Water Manag. 2011, 98, 847–854. [Google Scholar] [CrossRef]
- Scott, C.A.; El-Naser, H.; Hagan, R.E.; Hijazi, A. Facing Water Scarcity in Jordan Reuse, Demand Reduction, Energy, and Transboundary Approaches to Assure Future Water Supplies. Water Int. 2003, 28, 209–216. [Google Scholar] [CrossRef]
- The World Bank. Water Reuse in The Arab World, from Principle to Practice, A Summary of Proceedings, Expert Consultation Wastewater Management in the Arab World 22–24 May 2011; The World Bank: Dubai, UAE, 2011. [Google Scholar]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Medlicott, K.; Qadir, M.; Raschid-Sally, L.; Drechsel, P.; Liebe, J. UN-Water Project on the Safe Use of Wastewater in Agriculture; Jens Liebe, J., Ardakanian, K., Eds.; UN: Now York, NY, USA, 2013. [Google Scholar]
- Hussein, I.; Abu-Sharar, T.M.; Al-Jayyousi, O. The use of treated wastewater for irrigation in Jordan: Opportunities and constraints. Chart. Inst. Water Environ. J. 2003, 17, 232–238. [Google Scholar]
- Qadir, M.; Bahri, A.; Sato, T.; Al-Karadsheh, E. Wastewater production, treatment, and irrigation in Middle East and North Africa. Irrig. Drain. Syst. 2010, 24, 37–51. [Google Scholar] [CrossRef]
- Maldonado, P.M.A. Water Resources Assessment under Semi-arid Conditions—Modelling Applications in a Complex Surface-groundwater System in Jordan. Ph.D. Thesis, KIT-Bibliothek, Karlsruhe, Germany, 2017. [Google Scholar]
- Mohsen, M.; Jaber, J.O. Potential of industrial wastewater reuse. Desalination 2002, 152, 281–289. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hamaideh, A.; Hoekstra, A.Y.; Mekonnen, M.M.; Schyns, M. Mitigating the risk of extreme water scarcity and dependency: The case of Jordan. Water 2015, 7, 5705–5730. [Google Scholar] [CrossRef] [Green Version]
- SIWI: World Water Week. Water and Waste: Reduce and Reuse; SIWI: Stockholm, Sweden, 2017. [Google Scholar]
- Pintilie, L.; Torres, C.M.; Teodosiu, C.; Castells, F. Urban wastewater reclamation for industrial reuse: An LCA case study. J. Clean. Prod. 2016, 139, 1–14. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2016, 39, 86–96. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q. Energy-nutrients-water-nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 2013, 127, 255–267. [Google Scholar] [CrossRef]
- Husnain, T.; Liu, Y.; Riffat, R.; Mi, B. Integration of forward osmosis and membrane distillation for sustainable wastewater reuse. Sep. Purif. Technol. 2015, 156, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- USAID. National Strategic Wastewater Master Plan for Jordan; USAID-ISSP: Washington, DC, USA, 2013.
- Hussein, H. Tomatoes, tribes, bananas, and businessmen: An analysis of the shadow state and of the politics of water in Jordan. Environ. Sci. Policy 2018, 84, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Water Authority of Jordan. Groundwater Basins Directorate Open Files; Water Authority of Jordan: Amman, Jordan, 2016. [Google Scholar]
- Tong, L.; Liu, X.; Liu, X.; Zengwei, Y.; Zhang, Q. Life cycle assessment of water reuse systems in an industrial park. J. Environ. Manag. 2013, 129, 471–478. [Google Scholar] [CrossRef]
- Chang, D.; Ma, Z. Wastewater reclamation and reuse in Beijing: Influence factors and policy implications. Desalination 2012, 297, 72–78. [Google Scholar] [CrossRef]
- Yang, H.; Abbaspour, H.C. Analysis of wastewater reuse potential in Beijing. Desalination 2007, 212, 238–250. [Google Scholar] [CrossRef]
- Smith, K.; Liu, S.; Hu, H.Y.; Dong, X.; Wen, X. Water and energy recovery: The future of wastewater in China. Sci. Total Environ. 2018, 637, 1466–1470. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Zhang, W.; Wang, C.; Wang, P. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-NorthWater Diversion Project in China. Water Res. 2016, 89, 9–19. [Google Scholar] [CrossRef]
- Anne DE PAZZIS. As Samra Wastewater Treatment Plant A Major Asset for Sustainability in Jordan. Presented at the Stockholm World Water Week, Stockholm, Sweden, 31 August 2017. [Google Scholar]
- SAMRA WASTEWATER TREATMENT PLANT JORDAN. Available online: http://www.fogevaporator.com/pdf/samra-wastewater-treatment-plant.pdf (accessed on 18 November 2019).
- McCarty, P.L.; Bae, J.; Kim, J. Domestic wastewater treatment as a net energy producer–can this be achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef]
- Saidan, M.; Khasawneh, H.J.; Aboelnga, H.; Meric, S.; Kalavrouziotis, I.; Hayek, B.O.; Al-Momany, S.; Al Malla, M.; Porro, J.C. Baseline carbon emission assessment in water utilities in Jordan using ECAM tool. Baseline carbon emission assessment in water utilities in Jordan using ECAM tool. J. Water Supply Res. Technol. 2019, 68, 460–473. [Google Scholar] [CrossRef]
- Mehariya, S.; Patel, A.K.; Obulisamy, P.K.; Punniyakotti, E.; Wong, J.W.C. Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresour. Technol. 2018, 265, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Agyeman, F.O.; Tao, W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate. J. Environ. Manag. 2014, 133, 268–274. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Wong, J.W.C.; Li, R.; Zhang, Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.L.H.; Lo, I.M.C. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ. Sci. Pollut. Res. 2016, 23, 24435–24450. [Google Scholar] [CrossRef]
- Al-Addous, M.; Saidan, M.N.; Bdour, M.; Alnaief, M. Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System. Energies 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Li, X.; Zhang, D.; Chen, Y.; Dai, L. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio. Bioresour. Technol. 2016, 216, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Gu, J.; Zhao, Q.; Liu, Y. COD capture: A feasible option towards energy self sufficient domestic wastewater treatment. Sci. Rep. 2016, 6, 25054. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Robinson, Z.P.; Wang, X.; Wu, J.; Li, F. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl. Energy 2017, 204, 1463–1475. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Ronteltap, M.; Maurer, M.; Gujer, W. The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Res. 2007, 41, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Uysal, A.; Yilmazel, Y.D.; Demirer, G. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard. Mater. 2010, 181, 248–254. [Google Scholar] [CrossRef]
- Antakyali, D.; Kuch, B.; Preyl, V.; Steinmetz, H. Effect of Micropollutants in Wastewater on Recovered Struvite, Proc. Water Environ. Fed. Nutr. Recovery Manag. 2011, 1, 575–582. [Google Scholar] [CrossRef]
- Jabr, G.; Saidan, M.; Al-Hmoud, N. Phosphorus Recovery by Struvite Formation from Al Samra Municipal Wastewater Treatment Plant in Jordan. Desalin. Water Treat. 2019. [Google Scholar] [CrossRef]
- EPA. Guidelines for Water Reuse, U.S.; Environmental Protection Agency: Washington, DC, USA, 2004.
- Saidan, M.N.; Al-Yazjeen, H.; Abdalla, A.; Khasawneh, H.J.; Al-Naimat, H.; Al Alami, N.; Adawy, M.; Jaber, M.S.; Sowan, N. Assessment of on-site treatment process of institutional building’s wastewater. Processes 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Bixio, D.; Wintgens, T. Water Reuse System Management—Manual AQUAREC. Directorate-General for Research; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Huber, M.M.; Gobel, A.; Joss, A.; Hermann, N.; Loffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environ. Sci. Technol. 2005, 39, 4290–4299. [Google Scholar] [CrossRef] [PubMed]
- Feigin, A.; Ravina, I.; Shalhevet, J. Irrigation with Treated Sewage Effluent, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Brissaud, F. Low technology systems for wastewater treatment: Perspectives. Water Sci. Technol. 2007, 55, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A.; Bixio, D.; Traverso, P.; Cersosimo, I.; Thoeye, C. The removal of pathogens in surface-flow constructed wetlands and its implications for water reuse. Water Sci. Technol. 2007, 56, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Oron, G.; Gillerman, L.; Buriakovsky, N.; Bick, A.; Gargir, M.; Dolan, Y.; Manor, Y.; Katz, L.; Hagin, J. Membrane technology for advanced wastewater reclamation for sustainable agriculture production. Desalination 2008, 218, 170–180. [Google Scholar] [CrossRef]
- Hyun, K.S.; Lee, S.J. Biofilm/membrane filtration for reclamation and reuse of rural wastewaters. Water Sci. Technol. 2009, 59, 2145–2152. [Google Scholar] [CrossRef]
- Xu, P.; Drewes, J.E.; Bellona, C.; Amy, G.; Kim, T.U.; Adam, M.; Heberer, T. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environ. Res. 2005, 77, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Norton-Brandao, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Cañizares, P.; Barrera, C.; Sáez, C.; Rodrigo, M.A. Use of low current densities in electrolyses with conductive-diamond electrochemical e oxidation to disinfect treated wastewaters for reuse. Electrochem. Commun. 2011, 13, 1268–1270. [Google Scholar] [CrossRef]
- Wei, X.Z.; Gu, P.; Zhang, G.H. Research progress in the new model of pollutants in water and their removing methods. Ind. Water Treat. 2014, 34, 8–12. [Google Scholar]
- Bernabeu, A.; Vercher, R.F.; Santos-Juanes, L.; Simon, P.J.; Lardin, C.; Martinez, M.A.; Vicente, J.A.; Gonzalez, R.; llosa, C.; Arques, A.; et al. Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catal. Today 2011, 161, 235–240. [Google Scholar] [CrossRef]
- Pedrero, F.; Albuquerque, A.; Amado, L.; Marecos do Monte, H.; Alarcón, J. Analysis of the reclamation treatment capability of a constructed wetland for reuse. Water Pract. Technol. 2011, 6, wpt2011050. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Di Grande, V. Long-term storage of reclaimed water: The case studies in Sicily (Italy). Desalination 2008, 218, 62–73. [Google Scholar] [CrossRef]
- Yi, L.; Jiao, W.; Chen, X.; Chen, W. An overview of reclaimed water reuse in China. J. Environ. Sci. 2011, 23, 1585–1593. [Google Scholar] [CrossRef]
- Waterwise Queensland. Manual for Recycled Water Agreements in Queensland. The State of Queensland. Environmental Protection Agency. 2005. Available online: http://www.epa.qld.gov.au/waterrecyclingagreement (accessed on 12 November 2019).
- COAG. Communique August; Council of Australian Governments: Canberra, Australia, 2003.
- Di Carlo, A.; Sherman, A. The Reclaimed Water Agreement Manual, Russell Kennedy Solicitors, Melbourne. 2004. Available online: http://www.clw.csiro.au/priorities/urban/awcrrp/stage1files/AWCRRP_8%20Final_27Apr2004.pdf (accessed on 12 November 2019).
- Moore, W.; Gould, J. Shoalhaven Reclaimed Water Management Scheme—How a small region built a large water recycling scheme. In Proceedings of the Water Recycling Australia, 2nd National Conference, Brisbane, Australia, 1–2 September 2003. [Google Scholar]
TDS Classification | WWTP | Effluent Flow Rate (Million m3/year) | Total Flowrate of Grouped WWTPs (Million m3/year) |
---|---|---|---|
<1000 ppm | Aqaba-Tertiary | 3.90 | 17.93 |
Aqaba-Lagoon | 2.22 | ||
Wadi Essir | 1.71 | ||
Wadi Musa | 1.02 | ||
Salt | 3.19 | ||
Fuhis | 1.15 | ||
Abu Nusseir | 1.31 | ||
Madaba | 2.53 | ||
Ma’an | 0.92 | ||
1000 < TDS < 1500 | Karak | 0.54 | 147.32 |
Mafraq | 1.29 | ||
Mu’taa | 0.55 | ||
Wadi Hassan | 0.38 | ||
Al Samra | 117.10 | ||
Irbid | 3.10 | ||
Wadi Shalallah | 3.43 | ||
Kufranja | 1.25 | ||
Jeza | 0.29 | ||
South Amman | 4.72 | ||
Tafileh | 0.80 | ||
Wadi Arab | 4.98 | ||
Ain Albasha | 5.12 | ||
Al-Me’rad | 1.16 | ||
North Shouneh | 0.15 | ||
Tal-Almanttah | 0.15 | ||
Akeeder | 0.82 | ||
Ramtha | 1.50 | ||
>1500 | Jerash | 0.42 | 0.78 |
Shobak | 0.05 | ||
Al Lujjon | 0.30 |
Governorate | Major Groundwater Abstraction Industries |
---|---|
Amman | Cement, metals, concrete, paper and carton, etc. |
Zarqa | Petroleum refinery, metals and pipes, paper and cardboard, thermal power and electricity plants, cement, etc. |
Karak | Phosphate mines, potash, chemical fertilizers, cement, mining, etc. |
Ma’an | Phosphate, cement, etc. |
Aqaba | Phosphate, fertilizers, etc. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidan, M.N.; Al-Addous, M.; Al-Weshah, R.A.; Obada, I.; Alkasrawi, M.; Barbana, N. Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy. Water 2020, 12, 1276. https://doi.org/10.3390/w12051276
Saidan MN, Al-Addous M, Al-Weshah RA, Obada I, Alkasrawi M, Barbana N. Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy. Water. 2020; 12(5):1276. https://doi.org/10.3390/w12051276
Chicago/Turabian StyleSaidan, Motasem N., Mohammad Al-Addous, Radwan A. Al-Weshah, Ibrahim Obada, Malek Alkasrawi, and Nesrine Barbana. 2020. "Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy" Water 12, no. 5: 1276. https://doi.org/10.3390/w12051276