Urban Multi-Source Water Supply in China: Variation Tendency, Modeling Methods and Challenges
Abstract
:1. Introduction
2. Variation Tendency of Multi-Source Water Supply in China
2.1. Water Consumption and Water Supply Pattern in China
2.2. Water Supply Changes and Cause Analysis in a Typical City
3. Modeling Methods for Optimal Allocation of Multiple Water Sources
3.1. Topological Relation
3.2. Modeling Construction
3.3. Model Solution
3.3.1. Optimization Model
3.3.2. Common Software
4. Future Challenges for Urban Multi-Source Water Supply
4.1. Emergency Scheduling of Multiple Water Sources
4.2. Joint Operation of Water Quality and Quantity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Jin, G.; Yu, Y. Review of river basin water resource management in China. Water 2018, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Hubacek, K.; Pfister, S.; Yu, Y.; Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 2014, 48, 7704–7713. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Geng, Y.; Heck, P.; Xue, B. A review of China’s rural water management. Sustainability 2015, 7, 5773. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Wu, J. Review on natural resources utilization in China. Manag. Sci. Eng. 2011, 5, 16–21. [Google Scholar]
- Liu, J.; Raven, P.H. China’s environmental challenges and implications for the world. Crit. Rev. Env. Sci. Tec. 2010, 40, 823–851. [Google Scholar] [CrossRef]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Chen, D.; Wang, Q.; Zhang, Z. Seawater desalination in China: Retrospect and prospect. Chem. Eng. J. 2014, 242, 404–413. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hu, Y. Improving China’s water resources management for better adaptation to climate change. Clim. Chang. 2012, 112, 253–282. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C. Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China. Ecol. Econ. 2007, 62, 508–517. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C. Water resources flows related to urbanization in China: Challenges and perspectives for water management and urban development. Water Resour. Manag. 2012, 26, 531–552. [Google Scholar] [CrossRef]
- Han, Y.; Xu, S.; Xu, X. Modeling multisource multiuser water resources allocation. Water Resour. Manag. 2008, 22, 911–923. [Google Scholar] [CrossRef]
- Dou, X. A critical review of groundwater utilization and management in China’s inland water shortage areas. Water Policy 2016, 18, 1367–1383. [Google Scholar] [CrossRef]
- Dou, X. China’s inter-basin water management in the context of regional water shortage. Sustain. Water Resour. Manag. 2018, 4, 519–526. [Google Scholar] [CrossRef]
- Yi, L.; Jiao, W.; Chen, X.; Chen, W. An overview of reclaimed water reuse in China. J. Environ. Sci.-China 2011, 23, 1585–1593. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci.-China 2016, 39, 86–96. [Google Scholar] [CrossRef]
- Wu, C.; Déry, S.; Wu, W.; Liu, X.; Xiong, J.; Gao, W. A review of water resources utilization and protection in Southwest China. Sci. Cold Arid Reg. 2015, 7, 736–746. [Google Scholar]
- Zhang, S.; Yang, J.; Wan, Z.; Yi, Y. Multi-water source joint scheduling model using a refined water supply network: Case study of Tianjin. Water 2018, 10, 1580. [Google Scholar] [CrossRef] [Green Version]
- Li, P. Groundwater quality in western China: Challenges and paths forward for groundwater quality research in western China. Expos. Health 2016, 8, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin 2005–2018; China Water & Power Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Lu, S.; Gao, X.; Li, W.; Jiang, S.; Huang, L. A study on the spatial and temporal variability of the urban residential water consumption and its influencing factors in the major cities of China. Habitat Int. 2018, 78, 29–40. [Google Scholar] [CrossRef]
- Fan, L.; Gai, L.; Tong, Y.; Li, R. Urban water consumption and its influencing factors in China: Evidence from 286 cities. J. Clean. Prod. 2017, 166, 124–133. [Google Scholar] [CrossRef]
- Gu, A.; Teng, F.; Wang, Y. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh Five-year Plan. Energ. Convers. Manag. 2014, 85, 630–637. [Google Scholar] [CrossRef]
- Zuo, Q.; Jin, R.; Ma, J.; Cui, G. China pursues a strict water resources management system. Environ. Earth Sci. 2014, 72, 2219–2222. [Google Scholar] [CrossRef]
- Guo, J.; Ren, G.; Xiong, M.; Huang, H. The spatiotemporal pattern of rainy-season precipitation in the Haihe River Basin, North China. Hydrology 2019, 6, 73–91. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Imura, H. Towards sustainable urban water resource management: A case study in Tianjin, China. Sustain. Dev. 2001, 9, 24–35. [Google Scholar] [CrossRef]
- Shang, Y.; Lu, S.; Shang, L.; Li, X.; Shi, H.; Li, W. Decomposition of industrial water use from 2003 to 2012 in Tianjin, China. Technol. Forecast. Soc. 2017, 116, 53–61. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Xu, Z.; Zhang, C. Effect of frequency of multi-source water supply on regional guarantee rate of water use. Water 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Kong, F.; Zhan, C. Assessment of water resources carrying capacity in Tianjin City of China. Water Resour. Manag. 2011, 25, 857–873. [Google Scholar] [CrossRef]
- Men, B.; Wu, Z.; Liu, H.; Li, Y.; Zhao, Y. Research on hedging rules based on water supply priority and benefit loss of water shortage—A case study of Tianjin, China. Water 2019, 11, 778. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Sun, P.; Ma, Q.; Jiang, N.; Huang, G.; Xie, Y. Inexact two-stage stochastic programming for water resources allocation under considering demand uncertainties and response—A case study of Tianjin, China. Water 2017, 9, 414. [Google Scholar] [CrossRef]
- Water Bureau of Tianjin. Water Resources Bulletin of Tianjin 2000–2018; Water Bureau of Tianjin: Tianjin, China, 2018. (In Chinese) [Google Scholar]
- Shang, Y.; Wang, J.; Ye, Y.; Lei, X.; Gong, J.; Shi, H. An analysis of the factors that influence industrial water use in Tianjin, China. Int. J. Water Resour. D 2017, 33, 81–92. [Google Scholar] [CrossRef]
- Shang, Y.; Lu, S.; Li, X.; Sun, G.; Shang, L.; Shi, H.; Lei, X.; Ye, Y.; Sang, X.; Wang, H. Drivers of industrial water use during 2003–2012 in Tianjin, China: A structural decomposition analysis. J. Clean. Prod. 2017, 140, 1136–1147. [Google Scholar] [CrossRef]
- Gu, Q.; Chen, Y.; Pody, R.; Cheng, R.; Zheng, X.; Zhang, Z. Public perception and acceptability toward reclaimed water in Tianjin. Resour. Conserv. Recycl. 2015, 104, 291–299. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, L.; Liu, Y.; Qiao, H. Analysis on impact factors of water utilization structure in Tianjin, China. Sustainability 2016, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Liang, G.; He, B.; Dong, L.; Zhou, H. Modeling of joint operation for urban water-supply system with multi-water sources and its application. Adv. Water Sci. 2015, 26, 874–884. (In Chinese) [Google Scholar]
- Zhang, Y.; Tian, F.; Hu, H.; Qi, Z. Joint operation model of multiple water sources in Beijing. J. Hydraul. Eng. 2014, 45, 844–849. (In Chinese) [Google Scholar]
- Song, W.; Yuan, Y.; Jiang, Y.; Lei, X.; Shu, D. Rule-based water resource allocation in the Central Guizhou Province, China. Ecol. Eng. 2016, 87, 194–202. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M. A heuristic design support methodology based on graph theory for district metering of water supply networks. Eng. Optimiz. 2011, 43, 193–211. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Tzatchkov, V.G. Water network sectorization based on graph theory and energy performance indices. J. Water Res. Plan. Man. 2014, 140, 620–629. [Google Scholar] [CrossRef]
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water 2015, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Moglia, M.; Alexander, K.S.; Sharma, A. Discussion of the enabling environments for decentralised water systems. Water Sci. Technol. 2011, 63, 2331–2339. [Google Scholar] [CrossRef]
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An integrated framework for assessment of hybrid water supply systems. Water 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, J.; Zeng, S.; Sun, F.; Dong, X. A stochastic optimization approach for integrated urban water resource planning. Water Sci. Technol. 2013, 67, 1634–1641. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Deng, X.; Lan, X. Optimal water resources allocation under the constraint of land use in the Heihe River Basin of China. Sustainability 2015, 7, 1558. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Quan, J.; Li, X.; Wu, X.; Wu, H.; Li, Y.; Li, G. Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions. Agric. Water Manag. 2016, 174, 30–38. [Google Scholar] [CrossRef]
- Pingale, S.M.; Jat, M.K.; Khare, D. Integrated urban water management modelling under climate change scenarios. Resour. Conserv. Recycl. 2014, 83, 176–189. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Qian, H. Integrated modeling of water supply and demand under management options and climate change scenarios in Chifeng City, China. J. Am. Water Resour. As. 2015, 51, 655–671. [Google Scholar] [CrossRef]
- Cai, Y.; Yue, W.; Xu, L.; Yang, Z.; Rong, Q. Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty. Resour. Conserv. Recycl. 2016, 108, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, W.; Huang, G.; Liu, L.; Ji, L.; Li, Y. Urban water resources allocation under the uncertainties of water supply and demand: A case study of Urumqi, China. Environ Earth Sci. 2015, 74, 3543–3557. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Liu, P.; Li, Y. State-of-the-art review of joint operation for multi-reservoir systems. Adv. Water Sci. 2010, 21, 496–503. (In Chinese) [Google Scholar]
- Han, Y.; Huang, Y.; Wang, G.; Maqsood, I. A multi-objective linear programming model with interval parameters for water resources allocation in Dalian City. Water Resour. Manag. 2011, 25, 449–463. [Google Scholar] [CrossRef]
- Benayoun, R.; de Montgolfier, J.; Tergny, J.; Laritchev, O. Linear programming with multiple objective functions: Step method (stem). Math. Program. 1971, 1, 366–375. [Google Scholar] [CrossRef]
- Liu, S.; Papageorgiou, L.G.; Gikas, P. Integrated management of non-conventional water resources in anhydrous islands. Water Resour. Manag. 2012, 26, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Huang, G.; Huang, K.; Baetz, B.W. Planning water resources allocation under multiple uncertainties through a generalized fuzzy two-stage stochastic programming method. IEEE Trans. Fuzzy Syst. 2015, 23, 1488–1504. [Google Scholar] [CrossRef]
- Qin, X.S.; Xu, Y. Analyzing urban water supply through an acceptability-index-based interval approach. Adv. Water Resour. 2011, 34, 873–886. [Google Scholar] [CrossRef]
- Maqsood, I.; Huang, G.H.; Scott Yeomans, J. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. Eur. J. Oper. Res. 2005, 167, 208–225. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G. Identifying optimal water resources allocation strategies through an interactive multi-stage stochastic fuzzy programming approach. Water Resour. Manag. 2012, 26, 2015–2038. [Google Scholar] [CrossRef]
- Lu, H.; Huang, G.; He, L. Inexact rough-interval two-stage stochastic programming for conjunctive water allocation problems. J. Environ. Manag. 2009, 91, 261–269. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H. Inexact multistage stochastic quadratic programming method for planning water resources systems under uncertainty. Environ. Eng. Sci. 2007, 24, 1361–1378. [Google Scholar] [CrossRef]
- Fu, Q.; Li, T.; Cui, S.; Liu, D.; Lu, X. Agricultural multi-water source allocation model based on interval two-stage stochastic robust programming under uncertainty. Water Resour. Manag. 2018, 32, 1261–1274. [Google Scholar] [CrossRef]
- Yan, Z.; Sha, J.; Liu, B.; Tian, W.; Lu, J. An ameliorative whale optimization algorithm for multi-objective optimal allocation of water resources in Handan, China. Water 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L. State of the art for genetic algorithms and beyond in water resources planning and management. J. Water Res. Plan. Man. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Chen, J.; Yu, C.; Cai, M.; Wang, H.; Zhou, P. Multi-objective optimal allocation of urban water resources while considering conlict resolution based on the PSO algorithm: A case study of Kunming, China. Sustainability 2020, 12, 1337. [Google Scholar] [CrossRef] [Green Version]
- Zarghami, M.; Hajykazemian, H. Urban water resources planning by using a modified particle swarm optimization algorithm. Resour. Conserv. Recycl. 2013, 70, 1–8. [Google Scholar] [CrossRef]
- Afshar, A.; Massoumi, F.; Afshar, A.; Mariño, M.A. State of the art review of ant colony optimization applications in water resource management. Water Resour. Manag. 2015, 29, 3891–3904. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Huang, K.; Liu, Y. A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. Int. J. Geogr. Inf. Sci. 2012, 26, 1325–1343. [Google Scholar] [CrossRef]
- Hou, J.; Mi, W.; Sun, J. Optimal spatial allocation of water resources based on Pareto ant colony algorithm. Int. J. Geogr. Inf. Sci. 2014, 28, 213–233. [Google Scholar] [CrossRef]
- Liu, D.; Chen, X.; Lou, Z. A model for the optimal allocation of water resources in a saltwater intrusion area: A case study in Pearl River Delta in China. Water Resour. Manag. 2010, 24, 63–81. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Tabari, M.M.R.; Soltani, J. Multi-objective optimal model for conjunctive use management using SGAs and NSGA-II models. Water Resour. Manag. 2013, 27, 37–53. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, C.; Jiang, Y.; Li, Y.; Zhou, H. Conjunctive use of inter-basin transferred and desalinated water in a multi-source water supply system based on cost-benefit analysis. Water Resour. Manag. 2017, 31, 3313–3328. [Google Scholar] [CrossRef]
- Chang, F.; Wang, Y.; Tsai, W. Modelling intelligent water resources allocation for multi-users. Water Resour. Manag. 2016, 30, 1395–1413. [Google Scholar] [CrossRef]
- Wang, Q.; Savić, D.A.; Kapelan, Z. GALAXY: A new hybrid MOEA for the optimal design of water distribution systems. Water Resour. Res. 2017, 53, 1997–2015. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Bai, T.; Huang, Q.; Yang, D. Optimization of water resources utilization by PSO-GA. Water Resour. Manag. 2013, 27, 3525–3540. [Google Scholar] [CrossRef]
- Qu, G.; Lou, Z. Application of particle swarm algorithm in the optimal allocation of regional water resources based on immune evolutionary algorithm. J. Shanghai Jiaotong Univ. (Sci.) 2013, 18, 634–640. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Song, L.; Mei, C. An eco-environmental water demand based model for optimising water resources using hybrid genetic simulated annealing algorithms. Part I. Model development. J. Environ. Manag. 2009, 90, 2628–2635. [Google Scholar] [CrossRef]
- Hadka, D.; Reed, P. Borg: An auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 2013, 21, 231–259. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Robinson, B.A. Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Natl Acad. Sci. USA 2007, 104, 708–711. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, W.; Ding, X. A stochastic multi-objective chance-constrained programming model for water supply management in Xiaoqing River Watershed. Water 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Chen, A.; Yin, M.; Ma, Z.; You, J.; Xie, X.; Wang, Z.; An, Q. Optimal allocation model of water resources based on the prospect theory. Water 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, Z.; Hu, S.; Malano, H. Seasonal water allocation: Dealing with hydrologic variability in the context of a water rights system. J. Water Res. Plan. Man. 2013, 139, 76–85. [Google Scholar] [CrossRef]
- Zarghami, M. Urban water management using fuzzy-probabilistic multi-objective programming with dynamic efficiency. Water Resour. Manag. 2010, 24, 4491–4504. [Google Scholar] [CrossRef]
- Vieira, J.; Cunha, M.C.; Nunes, L.; Monteiro, J.P. Optimization of the operation of large-scale multisource water-supply systems. J. Water Res. Plan. Man. 2011, 137, 150–161. [Google Scholar] [CrossRef]
- George, B.; Malano, H.; Davidson, B.; Hellegers, P.; Bharati, L.; Massuel, S. An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development. Agric. Water Manag. 2011, 98, 733–746. [Google Scholar] [CrossRef]
- Perera, B.J.C.; James, B.; Kularathna, M.D.U. Computer software tool REALM for sustainable water allocation and management. J. Environ. Manag. 2005, 77, 291–300. [Google Scholar] [CrossRef]
- Shao, W.; Luo, L.; Wang, J.; Liu, J.; Zhou, J.; Xiang, C.; Wang, H. The coordination of routine and emergency water resources management: Progress in China. Water Int. 2018, 43, 943–962. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Liu, W.; Kapelan, Z.; Savic, D. Decision support system for emergency scheduling of raw water supply systems with multiple sources. Front. Environ. Sci. Eng. 2013, 7, 777–786. [Google Scholar] [CrossRef]
- Xu, J.; Ma, N.; Lv, C. Dynamic equilibrium strategy for drought emergency temporary water transfer and allocation management. J. Hydrol. 2016, 539, 700–722. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Song, T.; Wang, C. A decision support system for water supply emergency management with multiple sources. J. Water Supply Res. Technol. Aqua. 2016, 65, 135–144. [Google Scholar] [CrossRef]
- Dong, Z.; Bian, G.; Wang, C.; Li, D. Joint operation of water quantity and quality based on numerical model. Adv. Water Sci. 2009, 20, 184–189. (In Chinese) [Google Scholar]
- Mahjouri, N.; Ardestani, M. Application of cooperative and non-cooperative games in large-scale water quantity and quality management: A case study. Environ. Monit. Assess. 2011, 172, 157–169. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, L.; Zhang, Y.; Liu, F. Study on the coupling model for water quality and quantity control in the urban raw water system. J. Hydraul. Eng. 2012, 43, 1373–1380. (In Chinese) [Google Scholar]
- Galelli, S.; Castelletti, A.; Goedbloed, A. High-performance integrated control of water quality and quantity in urban water reservoirs. Water Resour. Res. 2015, 51, 9053–9072. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Wang, C.; Zhang, W.; Liu, W.; Sun, J.; Wang, X.; Lei, X.; Wang, H. Urban Multi-Source Water Supply in China: Variation Tendency, Modeling Methods and Challenges. Water 2020, 12, 1199. https://doi.org/10.3390/w12041199
Song P, Wang C, Zhang W, Liu W, Sun J, Wang X, Lei X, Wang H. Urban Multi-Source Water Supply in China: Variation Tendency, Modeling Methods and Challenges. Water. 2020; 12(4):1199. https://doi.org/10.3390/w12041199
Chicago/Turabian StyleSong, Peibing, Chao Wang, Wei Zhang, Weifeng Liu, Jiahui Sun, Xiaoying Wang, Xiaohui Lei, and Hao Wang. 2020. "Urban Multi-Source Water Supply in China: Variation Tendency, Modeling Methods and Challenges" Water 12, no. 4: 1199. https://doi.org/10.3390/w12041199
APA StyleSong, P., Wang, C., Zhang, W., Liu, W., Sun, J., Wang, X., Lei, X., & Wang, H. (2020). Urban Multi-Source Water Supply in China: Variation Tendency, Modeling Methods and Challenges. Water, 12(4), 1199. https://doi.org/10.3390/w12041199