Water Uptake Patterns of Alfalfa under Winter Irrigation in Cold and Arid Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sample Collection
2.3. Sample Collection and Isotopic Analyses
2.3.1. Alfalfa Xylem Water
2.3.2. Soil Water
2.3.3. Irrigation Water and Precipitation
2.4. Overwintering Rate and Forage Yield
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Oxygen and Hydrogen Isotopic Values of Water Samples
3.2. Distribution of Stable Isotopes in the Root Zone after Freezing Irrigation
3.3. Distribution of Stable Isotopes in the Root Zone after Thawing Irrigation
3.4. Overwintering Rate and Forage Yield under Winter Irrigation
4. Discussion
4.1. Characteristics of Water Uptake after Freezing Irrigation
4.2. Estimating the Source Contribution to Xylem Water after Freezing Irrigation
4.3. Characteristics of Water Uptake after Thawing Irrigation
4.4. Estimating the Source Contribution to Xylem Water after Thawing Irrigation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kandelous, M.M.; Kamai, T.; Vrugt, J.A.; Šimůnek, J.; Hanson, B.; Hopmans, J.W. Evaluation of subsurface drip irrigation design and management parameters for alfalfa. Agric. Water Manag. 2012, 109, 81–93. [Google Scholar] [CrossRef]
- Gu, J.; Yin, G.; Huang, P.; Guo, J.; Chen, L. An improved back propagation neural network prediction model for subsurface drip irrigation system. Comput. Electr. Eng. 2017, 60, 58–65. [Google Scholar] [CrossRef]
- Lamm, F.R.; Trooien, T.P. Subsurface drip irrigation for corn production: A review of 10years of research in Kansas. Irrig. Sci. 2003, 22, 195–200. [Google Scholar] [CrossRef]
- Yang, D.; Chen, F.; Zhou, Y. A Novel Eutrophication Assessment Models for Aquaculture Water Area via Artificial Neural Networks. J. Comput. Theor. Nanosci. 2015, 12, 2909–2912. [Google Scholar] [CrossRef]
- Çolak, Y.B.; Yazar, A.; Çolak, İ.; Akça, H.; Duraktekin, G. Evaluation of Crop Water Stress Index (CWSI) for Eggplant under Varying Irrigation Regimes Using Surface and Subsurface Drip Systems. Agric. Agric. Sci. Procedia 2015, 4, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.; Rajput, T.B.S. Effect of deficit irrigation on crop growth, yield and quality of onion in subsurface drip irrigation. Int. J. Plant Prod. 2013, 7, 417–436. [Google Scholar]
- Rop, D.K.; Kipkorir, E.C.; Taragon, J.K. Effects of Deficit Irrigation on Yield and Quality of Onion Crop. J. Agric. Sci. Camb. 2016, 8, 112. [Google Scholar] [CrossRef]
- Hongfu, Z. Alfalfa Science; China Agriculture Press: Beijing, China, 2009; pp. 121–125. [Google Scholar]
- Shaojie, M.; Yongliang, Y.; Chao, Z.; Kexin, Z. Spatio-temporal patterns of precipitation-use efficiency of grassland in Northwestern China. Acta Ecol. Sin. 2017, 37, 1458–1471. [Google Scholar] [CrossRef]
- Wang, D.; He, C.; Wu, H.; You, Y.; Wang, G. Review of Alfalfa Full-mechanized Production Technology. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–25. [Google Scholar]
- Ayars, J.E.; Fulton, A.; Taylor, B. Subsurface drip irrigation in California—Here to stay? Agric. Water Manag. 2015, 157, 39–47. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Clearwater, M.J.; Goldstein, G. Water transport in trees: Current perspectives, new insights and some controversies. Environ. Exp. Bot. 2001, 45, 239–262. [Google Scholar] [CrossRef]
- Dawson, T.E. Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions. Oecologia 1993, 95, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Ehleringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992, 15, 1073–1082. [Google Scholar] [CrossRef]
- Picon-Cochard, C.; Nsourou-Obame, A.; Collet, C.; Guehl, J.M.; Ferhi, A. Competition for water between walnut seedlings (Juglans regia) and rye grass (Lolium perenne) assessed by carbon isotope discrimination and delta18O enrichment. Tree Physiol. 2001, 21, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, T.E.; Ehleringer, J.R. Streamside trees that do not use stream water. Nature 1991, 350, 335–337. [Google Scholar] [CrossRef]
- Ellsworth, P.Z.; Williams, D.G. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant Soil 2007, 291, 93–107. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Walker, G.R.; Brunel, J.P. Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: Laboratory and field techniques. Plant Cell Environ. 1993, 16, 269–277. [Google Scholar] [CrossRef]
- Barbeta, A.; Jones, S.P.; Clavé, L.; Wingate, L.; Gimeno, T.E.; Fréjaville, B.; Wohl, S.; Ogée, J. Hydrogen isotope fractionation affects the identification and quantification of tree water sources in a riparian forest. Hydrol. Earth Syst. Sci. Discuss. 2018, 2018, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Evaristo, J.; Mcdonnell, J.J.; Clemens, J. Plant source water apportionment using stable isotopes: A comparison of simple linear, two—Compartment mixing model approaches. Hydrol. Process. 2017, 1–9. [Google Scholar] [CrossRef]
- Du, X.L.; Wang, S.J. Recent Advances of Stable Hydrogen and Oxygen Isotopic Techniques in Plant Water Use Strategy. Chin. Agric. Sci. Bull. 2011, 27, 5–10. [Google Scholar]
- Corbin, J.D.; Thomsen, M.A.; Dawson, T.E.; D’Antonio, C.M. Summer water use by California coastal prairie grasses: Fog, drought, and community composition. Oecologia 2005, 145, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- White, J.; Cook, E.; Lawrence, J.; Wallaces, B. The D/H ratios of sap in trees: Implications for water sources and tree ring D/H ratios. Geochim. Cosmochim. Acta 1985, 49, 237–246. [Google Scholar] [CrossRef]
- Schulze, E.; Caldwell, M.M.; Canadell, J.; Mooney, H.A.; Jackson, R.B.; Parson, D.; Scholes, R.; Sala, O.E.; Trimborn, P. Downward flux of water through roots (i.e., inverse hydraulic lift) in dry Kalahari sands. Oecologia 1998, 115, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, J.I.; Estrada-Medina, H.; Allen, M.F.; Jiménez-Osornio, J.J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 2007, 152, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Rouillard, A.; Greenwood, P.F.; Grice, K.; Skrzypek, G.; Dogramaci, S.; Turney, C.; Grierson, P.F. Interpreting vegetation change in tropical arid ecosystems from sediment molecular fossils and their stable isotope compositions: A baseline study from the Pilbara region of northwest Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 459, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Andriollo, D.D.; Redin, C.G.; Reichert, J.M.; Da Silva, L.S. Soil carbon isotope ratios in forest-grassland toposequences to identify vegetation changes in southern Brazilian grasslands. Catena 2017, 159, 126–135. [Google Scholar] [CrossRef]
- Chimner, R.A.; Cooper, D.J. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A. Plant Soil 2004, 260, 225–236. [Google Scholar] [CrossRef]
- Donovan, L.A.; Ehleringer, J.R. Water Stress and Use of Summer Precipitation in a Great Basin Shrub Community. Funct. Ecol. 1994, 8, 289. [Google Scholar] [CrossRef]
- Rose, K.L.; Graham, R.C.; Parker, D.R. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 2003, 134, 46–54. [Google Scholar] [CrossRef]
- Schifman, L.A.; Stella, J.C.; Volk, T.A.; Teece, M.A. Carbon isotope variation in shrub willow (Salix spp.) ring-wood as an indicator of long-term water status, growth and survival. Biomass Bioenergy 2012, 36, 316–326. [Google Scholar] [CrossRef]
- Cheng, X.; An, S.; Li, B.; Chen, J.; Lin, G.; Liu, Y.; Luo, Y.; Liu, S. Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecol. 2006, 184, 1–12. [Google Scholar] [CrossRef]
- Guo, F.; Ma, J.; Zheng, L.; Sun, X.; Guo, X.; Zhang, X. Estimating distribution of water uptake with depth of winter wheat by hydrogen and oxygen stable isotopes under different irrigation depths. J. Integr. Agric. 2016, 15, 891–906. [Google Scholar] [CrossRef] [Green Version]
- Oakes, A.M.; Hren, M.T. Temporal variations in the δD of leaf n -alkanes from four riparian plant species. Org. Geochem. 2016, 97, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Polacik, K.A.; Maricle, B.R. Effects of flooding on photosynthesis and root respiration in saltcedar (Tamarix ramosissima), an invasive riparian shrub. Environ. Exp. Bot. 2013, 89, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Schwinning, S.; Starr, B.I.; Ehleringer, J.R. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part II: Effects on plant carbon assimilation and growth. J. Arid Environ. 2005, 61, 61–78. [Google Scholar] [CrossRef]
- Yu, K.; D’Odorico, P. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Adv. Water Resour. 2014, 66, 70–80. [Google Scholar] [CrossRef]
- Jidong, T.; Noriyuki, Y.; Sheng, Z.; Yi, H. Modelling water content redistribution during evaporation from sandy soil in the presence of water table. Comput. Geotech. 2016, 75, 210–224. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environ. Exp. Bot. 2003, 49, 201–208. [Google Scholar] [CrossRef]
- Jiabin, W.; Shu, M.; Bing, X. Distribution of Stable Hydrogen and Oxygen Isotopes in the Root Zone of Alfalfa under Drip Irrigation. J. Irrig. Drain. 2017, 36, 14–17. [Google Scholar]
- Naydenova, G.; Hristova, T.; Aleksiev, Y. Objectives and approaches in the breeding of perennial legumes for use in temporary pasturelands. Biotechnol. Anim. Husb. 2013, 29, 233–250. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Hou, X. Alfalfa winter survival research summary. Pratacultural Sci. 2004, 21, 21–25. [Google Scholar]
- Keane, R.E.; Mahalovich, M.F.; Bollenbacher, B.L.; Manning, M.E.; Loehman, R.A.; Jain, T.B.; Holsinger, L.M.; Larson, A.J. Effects of Climate Change on Forest Vegetation in the Northern Rockies; Halofsky, J.E., Peterson, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 63, pp. 59–95. [Google Scholar]
- Yu, H.; Liu, H.; Wang, J. Effects of cover and irrigation on winter surviving rate, soil temperature and soil moisture of algonquin alfalfa. Chin. J. Grassl. 2015, 37, 107–111. [Google Scholar]
- Bingzhe, F.; Fugui, M.; Ruifang, L.; Duowen, S.; Xiangwei, H. Effect of covering soil and irrigation on overwintering rate and yield of Silphium perfoliatum L. Chin. J. Grassl. 2010, 32, 106–109. [Google Scholar]
- Mikić, A.; Ćupina, B.; Rubiales, D.; Mihailović, V.; Šarūnaitė, L.; Fustec, J.; Antanasović, S.; Krstić, Đ.; Bedoussac, L.; Zorić, L.; et al. Models, Developments, and Perspectives of Mutual Legume Intercropping; Elsevier: Amsterdam, The Netherlands, 2015; Volume 130, pp. 337–419. [Google Scholar]
- Demopoulos, A.W.J.; McClain-Counts, J.P.; Bourque, J.R.; Prouty, N.G.; Smith, B.J.; Brooke, S.; Ross, S.W.; Ruppel, C.D. Examination of Bathymodiolus childressi nutritional sources, isotopic niches, and food-web linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 148, 53–66. [Google Scholar] [CrossRef]
- Upadhayay, H.R.; Smith, H.G.; Griepentrog, M.; Bodé, S.; Bajracharya, R.M.; Blake, W.; Cornelis, W.; Boeckx, P. Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis. Sci. Total Environ. 2018, 637–638, 306–317. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, G.; Li, X.; Wang, Y.; He, B.; Jiang, Z.; Zhang, S.; Sun, W. Identifying water sources used by alpine riparian plants in a restoration zone on the Qinghai-Tibet Plateau: Evidence from stable isotopes. Sci. Total Environ. 2019, 697, 134092. [Google Scholar] [CrossRef]
- Wang, J.; Lu, N.; Fu, B. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Sci. Total Environ. 2019, 666, 685–693. [Google Scholar] [CrossRef]
- Wan, S. Study on Alfalfa Production Performance and Its Ecological Effects on Soil Environment in the Loess Plateau. Ph.D. Thesis, Northwest A & F University, Shaanxi, China, 2008. (In Chinese). [Google Scholar]
- Xu, K.; Li, S. Physical and chemical properties of soil in alfalfa field for different cultivated years. Pratacult. Sci. 2015, 32, 1767–1773. (In Chinese) [Google Scholar]
- Zhao, R.; Zhang, B.; Wang, X.; Han, F. Ecological stoichiometry characteristics of soil and plant of alfalfa with different growing years on the Loess Plateau. Pratacult. Sci. 2019, 36, 1189–1199. (In Chinese) [Google Scholar]
- Luo, Z.; Niu, Y.; Li, L.; Cai, L.; Zhang, R.; Xie, J. Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu. Acta Pratacult. Sci. 2015, 24, 31–38. (In Chinese) [Google Scholar]
- You, Y.; Zhao, H.; Li, Y.; Wu, R.; Liu, G. Effects of cutting system on the forage yield and quality of alfalfa in Haihe Plain area. Chin. J. Grassl. 2018, 40, 47–55. (In Chinese) [Google Scholar]
- Sulc, R.M.; Albrecht, K.A.; Palta, J.P.; Duke, S.H. Leakage of Intracellular Substances from Alfalfa Roots at Various Subfreezing Temperatures. Crop Sci. 1991, 31, 1575. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y. Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation. Agric. Water Manag. 2020, 231, 105995. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Li, J.; Cheng, P.; Liu, B.; Li, C. Effects of different dripper discharges on soil water infiltration/redistribution under drip irrigation. Agric. Res. Arid Areas 2016, 34, 224–231. (In Chinese) [Google Scholar]
- West, A.G.; Patrickson, S.J.; Ehleringer, J.R. Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun. Mass Spectrom. 2010, 20, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- West, A.G.; Goldsmith, G.R.; Brooks, P.D.; Dawson, T.E. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Commun. Mass Spectrom. RCM 2010, 24, 2687–2688. [Google Scholar] [CrossRef]
- Yang, B.; Wen, X.; Sun, X. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 2015, 201, 218–228. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.; Lu, N.; Zhang, L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Sci. Total Environ. 2017, 609, 27–37. [Google Scholar] [CrossRef]
- Stock, B.C.; Semmens, B.X. Unifying error structures in commonly used biotracer mixing models. Ecology 2016, 97. [Google Scholar] [CrossRef]
- Youri, R.; Mathieu, J. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences 2017, 14, 2199–2224. [Google Scholar]
- Eggemeyer, K.D.; Awada, T.; Harvey, F.E.; Wedin, D.A.; Zhou, X.; Zanner, C.W. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiol. 2009, 29, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. Clim. Chang. Cont. Isot. Rec. 1933, 78, 1–36. [Google Scholar]
- Wu, Y.; Du, T.; Li, F.; Li, S.; Ding, R.; Tong, L. Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope. Agric. Water Manag. 2016, 168, 35–44. [Google Scholar] [CrossRef]
- English, N.B.; Dettman, D.L.; Sandquist, D.R.; Williams, D.G. Past climate changes and ecophysiological responses recorded in the isotope ratios of saguaro cactus spines. Oecologia 2007, 154, 247–258. [Google Scholar] [CrossRef]
- Ma, Y.; Song, X. Seasonal Variations in Water Uptake Patterns of Winter Wheat under Different Irrigation and Fertilization Treatments. Water 2018, 10, 1633. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Su, D. Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China. Sustainability 2017, 9, 1380. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Sun, X.; Ma, J.; Lei, T.; Zheng, L.; Wang, P. Simulation of the Water Dynamics and Root Water Uptake of Winter Wheat in Irrigation at Different Soil Depths. Water 2018, 10, 1033. [Google Scholar] [CrossRef] [Green Version]
- Djaman, K.; O’Neill, M.; Owen, C.; Smeal, D.; West, M.; Begay, D.; Allen, S.; Koudahe, K.; Irmak, S.; Lombard, K. Long-Term Winter Wheat (Triticum aestivum L.) Seasonal Irrigation Amount, Evapotranspiration, Yield, and Water Productivity under Semiarid Climate. Agronomy 2018, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Sun, C.; Wu, W.; Sun, C. Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat–Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices. Water 2017, 9, 141. [Google Scholar] [CrossRef] [Green Version]
Soil Depth (cm) | Soil Texture | Bulk Density (g/cm3) | θFC (Field Water Capacity, %) |
---|---|---|---|
0–10 | Loamy | 1.41 | 32.6 |
10–20 | Loamy | 1.43 | 33.1 |
20–30 | Sandy loam | 1.49 | 31.0 |
30–40 | Sandy loam | 1.55 | 26.4 |
40–50 | Sandy | 1.63 | 24.4 |
50–60 | Sandy | 1.65 | 22.8 |
60–100 | Gravel | - | - |
Winter Irrigation | Irrigation Date | Irrigation Treatment | Wetting Depth (cm) | Irrigation Amount (mm) | Threshold of Soil Moisture θFC(%) |
---|---|---|---|---|---|
Freezing irrigation | 10 October 2016 | No | No | 0.0 | Natural |
Low water volume | 60 | 6.8 | 70–75 | ||
Medium water volume | 60 | 23.1 | 80–85 | ||
High water volume | 60 | 39.7 | 90–95 | ||
Thawing irrigation | 7 May 7 2017 | No | No | 0.0 | Natural |
Low water volume | 60 | 22.6 | 70–75 | ||
Medium water volume | 60 | 40.3 | 80–85 | ||
High water volume | 60 | 54.2 | 90–95 |
Winter Irrigation | Natural | L | M | H |
---|---|---|---|---|
Overwintering rate (%) | 45.75 c | 53.24 c | 65.75 b | 80.46 a |
Yield of first harvest (hay, kg/ha) | 1875 d | 2640 c | 3345 b | 4035 a |
Yield of second harvest (hay, kg/ha) | 889 c | 1033 b | 1156 a | 1227 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, H.; Niu, J.; Liu, T.; Zheng, H.; Xu, X.; Miao, S. Water Uptake Patterns of Alfalfa under Winter Irrigation in Cold and Arid Grassland. Water 2020, 12, 1093. https://doi.org/10.3390/w12041093
Wu J, Li H, Niu J, Liu T, Zheng H, Xu X, Miao S. Water Uptake Patterns of Alfalfa under Winter Irrigation in Cold and Arid Grassland. Water. 2020; 12(4):1093. https://doi.org/10.3390/w12041093
Chicago/Turabian StyleWu, Jiabin, Heping Li, Jianming Niu, Tiejun Liu, Hexiang Zheng, Xiangtian Xu, and Shu Miao. 2020. "Water Uptake Patterns of Alfalfa under Winter Irrigation in Cold and Arid Grassland" Water 12, no. 4: 1093. https://doi.org/10.3390/w12041093
APA StyleWu, J., Li, H., Niu, J., Liu, T., Zheng, H., Xu, X., & Miao, S. (2020). Water Uptake Patterns of Alfalfa under Winter Irrigation in Cold and Arid Grassland. Water, 12(4), 1093. https://doi.org/10.3390/w12041093