Characterizing the Water Storage Capacity and Hydrological Role of Mountain Peatlands in the Arid Andes of North-Central Chile
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Context
2.2. Climatic Context
2.3. Geological Context
2.4. Study Site
3. Materials and Methods
3.1. Vertical Electrical Sounding
3.2. Electrical Resistivity Tomography
3.3. Ground Penetrating Radar
3.4. Core Extraction and Acquisition Strategy
3.5. Evapotranspiration
3.6. Vegetation Cover Area
4. Results
4.1. Geophysical Results
4.2. Water Storage Capacity Assessment
- (1)
- That the lateral limits of the bofedal identified in the GPR sections (dashed blue lines in Figure 6) mark the end of the filling. It is expected from a geomorphological perspective that the alluvial filling would not develop beneath the colluvium. This idea is supported by hyperbolas observed below the lateral limit on line P1 (Figure 6), which are interpreted as boulder or rock scree, marking the end of the alluvial deposits.
- (2)
- The deep red reflectors (observed in profiles P1 and P3 in Figure 6) represent the maximum depth of the alluvial deposits perpendicular to the longitudinal P3 profile. From the P1 GPR section, it can be seen that this reflector has approximately a constant elevation of ~3081 m a.s.l.
- (3)
4.3. Evapotranspiration Estimates
5. Discussion
5.1. Bofedal Geomorphological Interpretation
5.2. Hydrological Role of High-Altitude Peatlands
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Carolis Friedmann, G. Descripción del Sistema Ganadero y Hábitos Alimentarios de Camélidos Domésticos y Ovinos en el Bofedal de Parinacota; Universidad de Chile: Santiago, Chile, 1987. [Google Scholar]
- Moreau, S.; Bosseno, R.; Gu, X.F.; Baret, F. Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sens. Environ. 2003, 85, 516–529. [Google Scholar] [CrossRef]
- Coronel, J.S.; Declerck, S.; Maldonado, M.; Ollevier, F.; Brendonck, L. Temporary shallow pools in high-Andes “bofedal” peatlands: A limnological characterization at different spatial scales. Arch. des Sci. 2004, 57, 85–96. [Google Scholar]
- Squeo, F.A.; Warner, B.G.; Aravena, R.; Espinoza, D. Bofedales: High Altitude Peatlands of the Central Andes Bofedales: Turberas de Alta Montaña de los Andes Centrales. Rev. Chil. Hist. Nat. 2006, 79, 245–255. [Google Scholar]
- Chimner, R.A.; Lemly, J.M.; Cooper, D.J. Mountain fen distribution, types and restoration priorities, San Juan Mountains, Colorado, USA. Wetlands 2010, 30, 763–771. [Google Scholar] [CrossRef]
- Comas, X.; Terry, N.; Hribljan, J.A.; Lilleskov, E.A.; Suarez, E.; Chimner, R.A.; Kolka, R.K. Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground-penetrating radar (GPR). J. Geophys. Res. Biogeosci. 2017, 122, 370–386. [Google Scholar] [CrossRef]
- Li, Z.; Gao, P.; You, Y. Characterizing Hydrological Connectivity of Artificial Ditches in Zoige Peatlands of Qinghai-Tibet Plateau. Water 2018, 10, 1364. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, P. Disponibilidad, uso y Calidad de los Recursos Hídricos en Bolivia; Cumbre Mundial sobre el Desarrollo Sostenible: Johannesburg, South Africa, 2002. [Google Scholar]
- Earle, L.R.; Warner, B.G.; Aravena, R. Rapid development of an unusual peat-accumulating ecosystem in the Chilean Altiplano. Quat. Res. 2003, 59, 2–11. [Google Scholar] [CrossRef]
- Reboratti, C. La situacion ambiental en las ecoregiones Puna y Altos Andes. In La Situación Ambiental Argentina 2005; Brown, A., Martinez Ortiz, U., Acerbi, M., Corcuera, J., Eds.; Fundación Vida Silvestre Argentina: Buenos Aires, Argentina, 2006; p. 577. ISBN 9509427144. [Google Scholar]
- Wright, A.C.S. Los bofedales-alkaline cushion-peatland peats of the semi-arid Chilean Altiplano. Pac. Viewp. 1962, 4, 189–193. [Google Scholar] [CrossRef]
- Alzérreca, H.; Prieto, G.; Laura, J.; Luna, D.; Laguna, S. Características y Distribución de los Bofedales en el Ámbito Boliviano; Editorial Plural Editores: La Paz, Bolivia, 2001. [Google Scholar]
- Fonkén, M.S.M. An introduction to the bofedales of the Peruvian High Andes. Mires Peat 2014, 15, 1–13. [Google Scholar]
- Otto, M.; Scherer, D.; Richters, J. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 1287–1327. [Google Scholar] [CrossRef]
- Scott, D.A.; Carbonell, M. A Directory of Neotropical Wetlands; IUCN Conservation Monitoring Centre: Cambridge, UK, 1986. [Google Scholar]
- Clymo, R.S. The Limits to Peat Bog Growth. Philos. Trans. R. Soc. B Biol. Sci. 1984, 303, 605–654. [Google Scholar]
- Crum, H.; Planisek, S. A Focus on Peatlands and Peat Mosses, 1st ed.; University of Michigan Press: Ann Arbor, MT, USA, 1992. [Google Scholar]
- Moore, P.D. The ecology of peat-forming processes: A review. Int. J. Coal Geol. 1989, 12, 89–103. [Google Scholar] [CrossRef]
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Maimer, N. Peat accumulation and the global carbon cycle. In Greenhouse-Impact on Cold-Climate Ecosystems and Landscapes; Boer, M., Koster, E., Eds.; Catena: Reiskirchent, Germany, 1992; Volume 22, p. 151. ISBN 9783923381319. [Google Scholar]
- Belyea, L.R.; Baird, A.J. Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development. Ecol. Monogr. 2006, 76, 299–322. [Google Scholar] [CrossRef]
- Ruthsatz, B. Flora und ökologische Bedingungen hochandiner Moore Chiles zwischen 18°00’ (Arica) und 40°30’ (Osorno) südl. Br. Phytocoenologia 1993, 23, 157–199. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Bryant, F.C.; Wester, D.; Allen, B.L. Grassland communities and soils on a high elevation grassland of central Peru. Phytologia 1986, 61, 231–250. [Google Scholar]
- Slater, L.D.; Reeve, A. Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 2002, 67, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.J. Application of impulse radar to continuous profiling of tephra-bearing lake sediments and peats: An initial evaluation. N. Z. J. Geol. Geophys. 1985, 28, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, R.E.; Davis, J.L.; Rossiter, J.R. Peat analyses in the Hudson Bay Lowlands using ground penetrating radar. In IGARSS ‘91, Proceedings of the 11th Annual International Geoscience and Remote Sensing Symposium, Espoo, Finland, 3–6 June 1991; Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1991; Volume 4, pp. 2141–2144. [Google Scholar]
- Meyer, J.H. Investigation of Holocene organic sediments—A geophysical approach. Int. Peat J. 1989, 3, 45–57. [Google Scholar]
- Comas, X.; Slater, L.; Reeve, A. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. J. Hydrol. 2004, 295, 173–184. [Google Scholar] [CrossRef]
- Slater, L.; Comas, X.; Ntarlagiannis, D.; Moulik, M.R. Resistivity-based monitoring of biogenic gases in peat soils. Water Resour. Res. 2007, 43, 10. [Google Scholar] [CrossRef] [Green Version]
- Kettridge, N.; Comas, X.; Baird, A.; Slater, L.; Strack, M.; Thompson, D.; Jol, H.; Binley, A. Ecohydrologically important subsurface structures in peatlands revealed by ground-penetrating radar and complex conductivity surveys. J. Geophys. Res. Biogeosci. 2008, 113, G4. [Google Scholar] [CrossRef] [Green Version]
- Sass, O.; Friedmann, A.; Haselwanter, G.; Wetzel, K.F. Investigating thickness and internal structure of alpine mires using conventional and geophysical techniques. Catena 2010, 80, 195–203. [Google Scholar] [CrossRef]
- Comas, X.; Terry, N.; Slater, L.; Warren, M.; Kolka, R.; Kristiyono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): Implications for carbon stock estimates and peat soil characterization. Biogeosciences 2015, 12, 2995–3007. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical mapping of palsa peatland permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Yáñez, G.A.; Ranero, C.R.; von Huene, R.; Díaz, J. Magnetic anomaly interpretation across the southern central Andes (32°-34° S): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J. Geophys. Res. Solid Earth 2001, 106, 6325–6345. [Google Scholar] [CrossRef]
- Favier, V.; Falvey, M.; Rabatel, A.; Praderio, E.; López, D. Interpreting discrepancies between discharge and precipitation in high-altitude area of chile’s norte chico region (263–2° S). Water Resour. Res. 2009, 45, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Valois, R.; MacDonell, S.; Núñez Cobo, J.H.; Maureira-Cortés, H. Groundwater level trends and recharge event characterization using historical observed data in semi-arid Chile. Hydrol. Sci. J. 2020. [Google Scholar] [CrossRef]
- Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J.L. Influence of Pacific Ocean multidecadal variability on the distributional properties of hydrological variables in north-central Chile. J. Hydrol. 2013, 501, 227–240. [Google Scholar] [CrossRef]
- Réveillet, M.; MacDonell, S.; Gascoin, S.; Kinnard, C.; Lhermitte, S.; Schaffer, N. Uncertainties in the spatial distribution of snow sublimation in the semi-arid Andes of Chile. Cryosph. Discuss. 2019, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Sproles, E.A.; Kerr, T.; Orrego Nelson, C.; Lopez Aspe, D. Developing a Snowmelt Forecast Model in the Absence of Field Data. Water Resour. Manag. 2016, 30, 2581–2590. [Google Scholar] [CrossRef]
- Gascoin, S.; Kinnard, C.; Ponce, R.; Lhermitte, S.; MacDonell, S.; Rabatel, A. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 2011, 5, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Perucca, L.; Angillieri, E. Glaciers and rock glaciers’ distribution at 28° SL, Dry Andes of Argentina, and some considerations about their hydrological significance. Environ. Earth Sci. 2011, 64, 2079–2089. [Google Scholar] [CrossRef]
- Schaffer, N.; MacDonell, S.; Réveillet, M.; Yáñez, E.; Valois, R. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Reg. Environ. Chang. 2019, 1–17. [Google Scholar] [CrossRef]
- Jones, P.H. Geology and ground-water conditions in the lower valley of the Rio Elqui of Chile. Econ. Geol. 1953, 48, 457–491. [Google Scholar] [CrossRef]
- Dahlin, T. The development of DC resistivity imaging techniques. Comput. Geosci. 2001, 27, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Zohdy, A.A.R. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 1989, 54, 245–253. [Google Scholar] [CrossRef]
- Bobachev, C. IPI2Win: A windows software for an automatic interpretation of resistivity sounding data. Moscow State Univ. 2002, 320. [Google Scholar]
- Greggio, N.; Giambastiani, B.; Balugani, E.; Amaini, C.; Antonellini, M. High-Resolution Electrical Resistivity Tomography (ERT) to Characterize the Spatial Extension of Freshwater Lenses in a Salinized Coastal Aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Valois, R.; Camerlynck, C.; Dhemaied, A.; Guerin, R.; Hovhannissian, G.; Plagnes, V.; Rejiba, F.; Robain, H. Assessment of doline geometry using geophysics on the Quercy plateau karst (South France). Earth Surf. Process. Landf. 2011, 36, 1183–1192. [Google Scholar] [CrossRef]
- Valois, R.; Galibert, P.Y.; Guerin, R.; Plagnes, V. Application of combined time-lapse seismic refraction and electrical resistivity tomography to the analysis of infiltration and dissolution processes in the epikarst of the Causse du Larzac (France). Near Surf. Geophys. 2016, 14, 13–22. [Google Scholar] [CrossRef]
- Valois, R.; Cousquer, Y.; Schmutz, M.; Pryet, A.; Delbart, C.; Dupuy, A. Characterizing Stream-Aquifer Exchanges with Self-Potential Measurements. Groundwater 2018, 56, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Theimer, B.D.; Nobes, D.C.; Warner, B.G. A study of the geoelectrical properties of peatlands and their influence on ground-penetrating radar surveying. Geophys. Prospect. 1994, 42, 179–209. [Google Scholar] [CrossRef]
- Comas, X.; Slater, L.; Reeve, A.S. Pool patterning in a northern peatland: Geophysical evidence for the role of postglacial landforms. J. Hydrol. 2011, 399, 173–184. [Google Scholar] [CrossRef]
- Vouillamoz, J.M.; Valois, R.; Lun, S.; Caron, D.; Arnout, L. Can groundwater secure drinking-water supply and supplementary irrigation in new settlements of North-West Cambodia? Hydrogeol. J. 2016, 24, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Science Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Hao, X.; Ball, B.C.; Culley, J.L.B.; Carter, M.R.; Parkin, G.W. Soil Density and Porosity. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada, 2008; p. 1261. ISBN 9780849335860. [Google Scholar]
- Jol, H. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 9780444533487. [Google Scholar]
- Asadi, A.; Huat, B.B.K. Electrical resistivity of tropical peat. Electron. J. Geotech. Eng. 2009, 14 P, 1–9. [Google Scholar]
- Maurer, H.; Hauck, C. Instruments and methods: Geophysical imaging of alpine rock glaciers. J. Glaciol. 2007, 53, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Parry, L.E.; West, L.J.; Holden, J.; Chapman, P.J. Evaluating approaches for estimating peat depth. J. Geophys. Res. Biogeosciences 2014, 119, 567–576. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop. Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, hare soil and grass. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [PubMed] [Green Version]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Valois, R.; Vouillamoz, J.-M.; Lun, S.; Arnout, L. Assessment of water resources to support the development of irrigation in northwest Cambodia: A water budget approach. Hydrol. Sci. J. 2017, 62, 1840–1855. [Google Scholar] [CrossRef]
- Jasmin, I.; Mallikarjuna, P. Review: Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India. Hydrogeol. J. 2011, 19, 729–740. [Google Scholar] [CrossRef]
- Weiss, J.L.; Gutzler, D.S.; Coonrod, J.E.A.; Dahm, C.N. Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J. Arid Environ. 2004, 58, 249–272. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model. Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005. [Google Scholar]
- Arrau Ingeniería SpA. Diseño Para el Aprovechamiento Óptimo de los Recursos Hídricos del Río Chalinga y Estero Derecho ARR67 IF V1; MINISTERIO DE OBRAS PUBLICAS: Santigo, Chile, 2019. [Google Scholar]
- Madrid, M.A. A Hydrogeological Study of High Altitude Peatlands in The Central Andes, Chile; University of Waterloo: Waterloo, ON, Canada, 2009. [Google Scholar]
- Edwards, A.S. Simulating the Evapotranspiration (ET) Controlled Seasonal Response of a High Altitude Peatland in the Central Andes, Chile; University of Waterloo: Waterloo, ON, Canada, 2010. [Google Scholar]
- Rossi, P.M.; Ala-aho, P.; Doherty, J.; Kløve, B. Impact du drainage de tourbières et restauration des ressources en eau souterraine d’eskers: Modélisation de scénarios futurs de gestion. Hydrogeol. J. 2014, 22, 1131–1145. [Google Scholar] [CrossRef]
- Millar, D.J.; Cooper, D.J.; Ronayne, M.J. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting. J. Hydrol. 2018, 561, 908–917. [Google Scholar] [CrossRef] [Green Version]
- Siegela, D.I. The Recharge-Discharge Function of Wetlands Near Juneau, Alaska: Part I. Hydrogeological Investigations. Ground Water 1988, 26, 427–434. [Google Scholar] [CrossRef]
- McNamara, J.P.; Siegel, D.I.; Glaser, P.H.; Beck, R.M. Hydrogeologic controls on peatland development in the Malloryville Wetland, New York (USA). J. Hydrol. 1992, 140, 279–296. [Google Scholar] [CrossRef]
- Wells, C.M.; Price, J.S. The hydrogeologic connectivity of a low-flow saline-spring fen peatland within the Athabasca oil sands region, Canada. Hydrogeol. J. 2015, 23, 1799–1816. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Garreton, C.; Mendoza, P.A.; Boisier, J.P.; Addor, N.; Galleguillos, M.; Zambrano-Bigiarini, M.; Lara, A.; Puelma, C.; Cortes, G.; Garreaud, R.; et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies–Chile dataset. Hydrol. Earth Syst. Sci. 2018, 22, 5817–5846. [Google Scholar] [CrossRef] [Green Version]
- Cowley, K.L.; Fryirs, K.A.; Chisari, R.; Hose, G.C. Water Sources of Upland Swamps in Eastern Australia: Implications for System Integrity with Aquifer Interference and a Changing Climate. Water 2019, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Valois, R.; Araya, J.; MacDonell, S.; Guzmán, C.; Fernandoy, F.; Yáñez, G.; Cuevas, J.C.; Sproles, E.; Maldonado, A. Characterizing the underground structure and water sources of a mountain peatland in the semiarid Chilean Andes using geophysics and water stable isotopes. Environ. Earth Sci. 2019. submitted. [Google Scholar]
- Mosquera, G.M.; Célleri, R.; Lazo, P.X.; Vaché, K.B.; Perakis, S.S.; Crespo, P. Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrol. Process. 2016, 30, 2930–2947. [Google Scholar] [CrossRef] [Green Version]
- Słowińska, S.; Słowiński, M.; Lamentowicz, M. Relationships between Local Climate and Hydrology in Sphagnum Mire: Implications for Palaeohydrological Studies and Ecosystem Management. Pol. J. Environ. Stud. 2010, 19, 779–787. [Google Scholar]
- Ramchunder, S.J.; Brown, L.E.; Holden, J.; Langton, R. Spatial and seasonal variability of peatland stream ecosystems. Ecohydrology 2011, 4, 5775–5788. [Google Scholar] [CrossRef]
Material | Electrical Resistivity (Ωm) | EM Wave Velocity (m/µs) |
---|---|---|
Ice | 106–107 | 170 |
Water | 10–100 | 30 |
Air | 1014 | 300 |
Clay | 1–100 | 47 (wet)–210 (dry) |
Sand | 100–5 × 103 | 54 (wet)–170 (dry) |
Gravels | 100–4 × 102 | 80–120 |
Granite | 5 × 103–106 | 77 (wet and fractured)–130 (dry) |
Peat | 10–350 | 35–45 |
Peatland Scale (mm) | Watershed Scale (mm) | Precip in Horcon (mm) | ||||
---|---|---|---|---|---|---|
Peatland Annual AET | Peatland Stock | Peatlands Annual AET | Peatlands Stock | Stream Flow | ||
2017–2018 | 1520 | 2000 | 35.1 | 46.2 | 103 | 240 |
2018–2019 | 1660 | 38.3 | 54 | 33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valois, R.; Schaffer, N.; Figueroa, R.; Maldonado, A.; Yáñez, E.; Hevia, A.; Yánez Carrizo, G.; MacDonell, S. Characterizing the Water Storage Capacity and Hydrological Role of Mountain Peatlands in the Arid Andes of North-Central Chile. Water 2020, 12, 1071. https://doi.org/10.3390/w12041071
Valois R, Schaffer N, Figueroa R, Maldonado A, Yáñez E, Hevia A, Yánez Carrizo G, MacDonell S. Characterizing the Water Storage Capacity and Hydrological Role of Mountain Peatlands in the Arid Andes of North-Central Chile. Water. 2020; 12(4):1071. https://doi.org/10.3390/w12041071
Chicago/Turabian StyleValois, Remi, Nicole Schaffer, Ronny Figueroa, Antonio Maldonado, Eduardo Yáñez, Andrés Hevia, Gonzalo Yánez Carrizo, and Shelley MacDonell. 2020. "Characterizing the Water Storage Capacity and Hydrological Role of Mountain Peatlands in the Arid Andes of North-Central Chile" Water 12, no. 4: 1071. https://doi.org/10.3390/w12041071