Improving Princeton Forcing Dataset over Iran Using the Delta-Ratio Method
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Observed Dataset
3.2. Princeton Global Forcing (PGF) Dataset
3.3. Bias-Correction of Gridded Datasets
4. Results
4.1. Evaluation of Average Monthly Climate Data
4.2. Time Series of Adjusted Climate Variables in Different Climatic Zones
4.3. Validation of the Adjusted Datasets at 37 Station Points
4.4. The Distribution of Average Annual Precipitation
4.5. Climate Characteristics in Each Climate Zone over Iran
5. Discussion
5.1. Evaluation of the Gridded Dataset
5.2. Time Series of Climate Data
5.3. Spatial and Temporal Distributions of the Climate Variables
5.4. The Application of Delta-Ratio Approach for Adjusting Gridded Global Climate Datasets
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ledesma, J.L.J.; Futter, M.N. Gridded climate data products are an alternative to instrumental measurements as inputs to rainfall-runoff models. Hydrol. Process. 2017, 31, 3283–3293. [Google Scholar] [CrossRef] [Green Version]
- Dezfooli, D.; Abdollahi, B.; Hosseini-Moghari, S.M.; Ebrahimi, K. A comparison between high-resolution satellite precipitation estimates and gauge measured data: Case study of Gorganrood basin, Iran. J. Water Supply Res. T. 2018, 67, 236–251. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelero, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.M.; Araghinejad, S.; Ebrahimi, K. Spatio-temporal evaluation of global gridded precipitation datasets across Iran. Hydrolog. Sci. J. 2018, 63, 1669–1688. [Google Scholar] [CrossRef]
- Ensor, L.A.; Robeson, S.M. Statistical Characteristics of Daily Precipitation: Comparison of Gridded and Point Datasets. J. Appl. Meteorol. Climatol. 2008, 47, 2468–2476. [Google Scholar] [CrossRef]
- Hofstra, N.; Haylock, M.; New, M.; Jones, P.; Frei, C. Comparison of six methods for the interpolation of daily, European climate data. J. Geophys. Res. 2008, 113, D21110. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, S.; Gubler, S.; Calle, J.; Moreno, I.; Andrade, M.; Velarde, F.; Ticona, L.; Carrasco, G.; Castellón, Y.; Oria, C.; et al. Identifying, attributing, and overcoming common data quality issues of manned station observations. Int. J. Climatol. 2017, 37, 4131–4145. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2017, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.T.; Schnorbus, M.A.; Shrestha, R.R.; Cannon, A.J.; Zwiers, F.W.; Dayon, G.; Anslow, F. A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci. Data 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Brinckmann, S.; Krähenmann, S.; Bissolli, P. High-resolution daily gridded data sets of air temperature and wind speed for Europe. Earth Syst. Sci. Data 2016, 8, 491–516. [Google Scholar] [CrossRef] [Green Version]
- Gampe, D.; Ludwig, R. Evaluation of Gridded Precipitation Data Products for Hydrological Applications in Complex Topography. Hydrology 2017, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tang, Q.; Pan, M.; Tang, Y. A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China. J. Hydrometeorol. 2014, 15, 2067–2084. [Google Scholar] [CrossRef]
- Yanto; Livneh, B.; Rajagopalan, B. Development of a gridded meteorological dataset over Java island, Indonesia 1985–2014. Sci. Data 2017, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Evaluation of Gridded Precipitation Datasets over Arid Regions of Pakistan. Water 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Guan, K.; Sheffield, J.; Wood, E.F.J. Depiction of drought over sub-Saharan Africa using reanalyses precipitation data sets. J. Geophys. Res. Atmos 2016, 121, 10–555. [Google Scholar] [CrossRef]
- Chaney, N.W.; Sheffield, J.; Villarini, G.; Wood, E.F. Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes. J. Clim. 2014, 27, 5815–5835. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Chiew, F.H.; Arancibia, J.P.; Zhou, X. Evaluating regional and global hydrological models against streamflow and evapotranspiration measurements. J. Hydrometeorol. 2016, 17, 995–1010. [Google Scholar] [CrossRef]
- Pan, M.; Sahoo, A.K.; Troy, T.J.; Vinukollu, R.K.; Sheffield, J.; Wood, E.F. Multisource estimation of long-term terrestrial water budget for major global river basins. J. Clim. 2012, 25, 3191–3206. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Chung, E.S. Development of high-resolution daily gridded temperature datasets for the central north region of Egypt. Sci. Data 2019, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Poulin, A.; Brissette, F.; Leconte, R.; Arsenault, R.; Malo, J.S. Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol. 2011, 409, 626–636. [Google Scholar] [CrossRef]
- Rahimzadeh, F.; Noorian, A.M.; Pedram, M.; Kruk, M.C. Wind speed variability over Iran and its impact on wind power potential: A case study for Esfehan Province. Meteorol. Appl. 2011, 18, 198–210. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar] [CrossRef]
- Babaeian, I.; Modirian, R.; Karimian, M.; Zarghami, M. Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system. Desert 2015, 20, 123–134. [Google Scholar] [CrossRef]
- Ghasemi, A.R. Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos. Sci. Lett. 2015, 16, 366–372. [Google Scholar] [CrossRef]
- Ashraf Vaghefi, S.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The future of extreme climate in Iran. Sci. Rep. 2019, 9, 1464. [Google Scholar] [CrossRef] [Green Version]
- Khalili, A.; Rahimi, J. The Soils of Iran; Springer: Cham, Germany, 2018; pp. 19–33. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.F. Interpolation of Rainfall Data with Thin Plate Smoothing Splines—Part I: Two Dimensional Smoothing of Data with Short Range Correlation. GIDA 1998, 2, 139–151. [Google Scholar]
- Hutchinson, M.F. Interpolation of Rainfall Data with Thin Plate Smoothing Splines—Part II: Analysis of Topographic Dependence. GIDA 1998, 2, 152–167. [Google Scholar]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, W10434. [Google Scholar] [CrossRef] [Green Version]
- Mansouri Daneshvar, M.R.; Ebrahimi, M.; Nejadsoleymani, H. An overview of climate change in Iran: Facts and statistics. Environ. Syst. Res. 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Berg, P.; Feldmann, H.; Panitz, H.J. Bias correction of high resolution regional climate model data. J. Hydrol. 2012, 448–449, 80–92. [Google Scholar] [CrossRef]
- Van Roosmalen, L.; Christensen, J.H.; Butts, M.B.; Jensen, K.H.; Refsgaard, J.C. An intercomparison of regional climate model data for hydrological impact studies in Denmark. J. Hydrol. 2010, 380, 406–419. [Google Scholar] [CrossRef]
- Graham, L.P.; Hagemann, S.; Jaun, S.; Beniston, M. On interpreting hydrological change from regional climate models. Clim. Chang. 2007, 81, 97–122. [Google Scholar] [CrossRef]
- Graham, L.P.; Andréasson, J.; Carlsson, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule River basin. Clim. Chang. 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Kleinn, J.; Frei, C.; Gurtz, J.; Lüthi, D.; Vidale, P.L.; Schär, C. Hydrologic simulations in the Rhine basin driven by a regional climate model. J. Geophys. Res. Atmos 2005, 110, D04102. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
Skill Score | Equation | Perfect Value |
---|---|---|
Nash–Sutcliffe efficiency (NSE) | 1 | |
Percent bias (PBIAS) | 0 | |
Root-mean-square error (RMSE) | 0 | |
Correlation coefficient (R2) | 1 |
Arid | Humid | Per-Humid | |
---|---|---|---|
Precipitation | −1.69 * | −1.36 | −0.40 |
Maximum temp | 0.05 ** | 0.05 ** | 0.05 ** |
Minimum temp | 0.05 ** | 0.04 | 0.05 ** |
Wind speed | 0.02 ** | 0.03 ** | 0.03 ** |
Climate Variables | Princeton | ||||
---|---|---|---|---|---|
NSE | PBIAS (%) | RMSE | R2 | ||
Original data | Precipitation | −0.03 | −29.20 | 380.21 | 0.06 |
Tmax | 0.49 | 4.7 | 2.7 | 0.69 | |
Tmin | 0.68 | −24.3 | 2.95 | 0.81 | |
Wind | −4.74 | 74.60 | 1.87 | 0.04 | |
Adjusted data | Precipitation | 0.72 | −6.6 | 197.77 | 0.75 |
Tmax | 0.73 | 6.8 | 2.13 | 0.94 | |
Tmin | 0.52 | −42.8 | 3.59 | 0.90 | |
Wind | 0.22 | 14.10 | 0.69 | 0.37 |
Arid | Humid | Per-Humid | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pr | Tmax | Tmin | Wd | Pr | Tmax | Tmin | Wd | Pr | Tmax | Tmin | Wd | |
OBS | 194 | 29.56 | 3.62 | 2.47 | 388 | 26.39 | 1.62 | 2.3 | 551 | 26.15 | 6.45 | 2.2 |
PGF | 188 | 29.25 | 3.33 | 3.86 | 338 | 25.67 | −0.07 | 3.32 | 335 | 26.1 | 2.42 | 3.64 |
Adj_PGF | 192 | 29.41 | − | 2.47 | 386 | 26.11 | − | 2.3 | 531 | 25.77 | − | 2.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Tang, Q.; Liu, X.; Hosseini-Moghari, S.-M.; Attarod, P. Improving Princeton Forcing Dataset over Iran Using the Delta-Ratio Method. Water 2020, 12, 630. https://doi.org/10.3390/w12030630
Zhang Q, Tang Q, Liu X, Hosseini-Moghari S-M, Attarod P. Improving Princeton Forcing Dataset over Iran Using the Delta-Ratio Method. Water. 2020; 12(3):630. https://doi.org/10.3390/w12030630
Chicago/Turabian StyleZhang, Qinghuan, Qiuhong Tang, Xingcai Liu, Seyed-Mohammad Hosseini-Moghari, and Pedram Attarod. 2020. "Improving Princeton Forcing Dataset over Iran Using the Delta-Ratio Method" Water 12, no. 3: 630. https://doi.org/10.3390/w12030630
APA StyleZhang, Q., Tang, Q., Liu, X., Hosseini-Moghari, S.-M., & Attarod, P. (2020). Improving Princeton Forcing Dataset over Iran Using the Delta-Ratio Method. Water, 12(3), 630. https://doi.org/10.3390/w12030630