Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area and Hydrometeorological Data
2.2. Soil Moisture Datasets
3. Meteorological Models
- The AROME model is based on the ALADIN model cy36t1 with an hourly time step, 36-h term and a spatial resolution of 2.5 km. The physical parameterizations are from the Méso-NH research model [50,51]. The Rapid Radiative Transfert Model (RRTM) longwave equation is used [52] and the shortwave radiation is represented by six spectral bands [53]. The externalized SURFEX module is used to represent the surface exchanges [54] with a parameterization of the natural land surfaces by ISBA scheme [55]. The lateral boundary conditions are from hourly ALADIN forecasts with 7.5 km horizontal resolution. No deep convection parameterization is needed due to the high resolution and a bulk microphysiscs scheme [56] that regroups the six equations of water variables (water vapor, cloud water, rain water, primary ice, graupel and snow).
- The ALADIN (ALADIN—France, Aladin International Team 1997) with a three-hour time step, 72 h term and a spatial resolution of 10 km. The model’s runs are with a two-time-level semi-Lagrangian advection scheme are used with a complete package of physical parameterizations. The physics are the same as in ARPÈGE model [57]. The operational version at Morocco is ALADIN-Morocco [58].
4. Methods
4.1. Evaluation of the Quantitative Meteorological Forecasts
4.2. Rainfall-Runoff Model
4.3. Regression Model
4.4. Metrics
5. Results
5.1. Validation of Forecasted Rainfall Events
5.2. Evaluation of Meteorological Models
5.3. Quantitative Discharge Forecasting
5.3.1. Hydro-Meteorological Approach
5.3.2. Regression Approach
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borga, M.; Gaume, E.; Creutin, J.D.; Marchi, L. Surveying flash floods: Gauging the ungauged extremes. Hydrol. Process. 2008, 22, 3883–3885. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Hong, Y.; Adhikari, P.; Gourley, J.J. Flash Flood; Springer: Dordrecht, The Netherlands, 2013; pp. 324–325. [Google Scholar]
- Vinet, F.; Bigot, V.; Petrucci, O.; Papagiannaki, K.; Llasat, M.C.; Kotroni, V.; Boissier, L.; Aceto, L.; Grimalt, M.; Llasat-Botija, M.; et al. Mapping flood-related mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB. Water 2019, 11, 2196. [Google Scholar] [CrossRef] [Green Version]
- Penning-Rowsell, E.C.; Tunstall, S.M.; Tapsell, S.M.; Parker, D.J. The benefits of flood warnings: Real but elusive, and politically significant. Water Environ. J. 2000, 14, 7–14. [Google Scholar] [CrossRef]
- Thielen, J.; Bartholmes, J.; Ramos, M.-H.; de Roo, A. The European flood alert system—Part 1: Concept and development. Hydrol. Earth Syst. Sci. 2009, 13, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Yucel, I.; Onen, A.; Yilmaz, K.K.; Gochis, D.J. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Barthel, F.; Neumayer, E. A trend analysis of normalized insured damage from natural disasters. Clim. Change 2012, 113, 215–237. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim. Chang. 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Raynaud, D.; Thielen, J.; Salamon, P.; Burek, P.; Anquetin, S.; Alfieri, L. A dynamic runoff co-efficient to improve flash flood early warning in Europe: Evaluation on the 2013 central European floods in Germany. Meteorol. Appl. 2015, 22, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Corral, C.; Berenguer, M.; Sempere-Torres, D.; Poletti, L.; Silvestro, F.; Rebora, N. Comparison of two early warning systems for regional flash flood hazard forecasting. J. Hydrol. 2019, 572, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, W.F.; Ceynar, D.; Demir, I.; Goska, R.; Kruger, A.; Langel, C.; Mantilla, R.; Niemeier, J.; Quintero, F.; Seo, B.-C.; et al. Real-Time flood forecasting and information system for the State of Iowa. Bull. Am. Meteorol. Soc. 2017, 98, 539–554. [Google Scholar] [CrossRef]
- Jasper, K.; Gurtz, J.; Lang, H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J. Hydrol. 2002, 267, 40–52. [Google Scholar] [CrossRef]
- Bhowmik, S.K.R.; Durai, V.R. Development of multimodel ensemble based district level medium range rainfall forecast system for Indian region. J. Earth Syst. Sci. 2012, 121, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, L.-F.; Yang, M.-J.; Lee, C.-S.; Shih, D.-S.; Tsai, C.-C.; Wang, C.-J.; Chang, L.-Y.; Chen, D.Y.-C.; Feng, L.; Hong, J.-S.; et al. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol. 2013, 506, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Shih, D.-S.; Chen, C.-H.; Yeh, G.-T. Improving our understanding of flood forecasting using earlier hydro-meteorological intelligence. J. Hydrol. 2014, 512, 470–481. [Google Scholar] [CrossRef]
- Amengual, A.; Homar, V.; Jaume, O. Potential of a probabilistic hydrometeorological forecasting approach for the 28 September 2012 extreme flash flood in Murcia, Spain. Atmos. Res. 2015, 166, 10–23. [Google Scholar] [CrossRef]
- Goodarzi, L.; Banihabib, M.E.; Roozbahani, A. A decision-making model for flood warning system based on ensemble forecasts. J. Hydrol. 2019, 573, 207–219. [Google Scholar] [CrossRef]
- Patel, P.; Ghosh, S.; Kaginalkar, A.; Islam, S.; Karmakar, S. Performance evaluation of WRF for extreme flood forecasts in a coastal urban environment. Atmos. Res. 2019, 223, 39–48. [Google Scholar] [CrossRef]
- Coccia, G.; Todini, E. Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol. Earth Syst. Sci. 2011, 15, 3253–3274. [Google Scholar] [CrossRef] [Green Version]
- Leandro, J.; Gander, A.; Beg, M.N.A.; Bhola, P.; Konnerth, I.; Willems, W.; Carvalho, R.; Disse, M. Forecasting upper and lower uncertainty bands of river flood discharges with high predictive skill. J. Hydrol. 2019, 21, 925–944. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- McGlynn, B.L. The role of riparian zones in steep mountain watersheds. In Global Change and Mountain Regions; Springer: Cham, Switzerland, 2005; pp. 331–342. [Google Scholar]
- Tromp van Meerveld, I.; McDonnell, J.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2005, 286, 113–134. [Google Scholar]
- James, A.L.; Roulet, N.T. Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments. J. Hydrol. 2009, 377, 351–366. [Google Scholar] [CrossRef]
- James, A.L.; Roulet, N.T. Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrol. Process. 2007, 21, 3391–3408. [Google Scholar] [CrossRef]
- Latron, J.; Gallart, F. Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). J. Hydrol. 2008, 358, 206–220. [Google Scholar] [CrossRef]
- Zehe, E.; Graeff, T.; Morgner, M.; Bauer, A.; Bronstert, A. Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrol. Earth Syst. Sci. 2010, 14, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Penna, D.; Tromp-Van Meerveld, H.J.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci 2011, 15, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Saidi, M.E.M.; Daoudi, L.; Aresmouk, M.E.H.; Blali, A. Rôle du milieu physique dans l’amplification des crues en milieu montagnard: Exemple de la crue du 17 août 1995 dans la vallée de l’Ourika (Haut-Atlas, Maroc). Sécheresse 2003, 15, 107–114. [Google Scholar]
- Vinet, F.; El Mehdi Saidi, M.; Douvinet, J.; Fehri, N.; Nasrallah, W.; Menad, W.; Mellas, S. Urbanization and land use as a driver of flood risk. In The Mediterranean Region Under Climate Change; IRD Éditions: Marseille, France, 2016; Chapter 3.4.1.; pp. 563–575. ISBN 9782709922203. [Google Scholar]
- Japan International Cooperation Agency (JICA) Etude du Plan Directeur sur Le Systeme de Prevision et D’alerte aux Crues Pour La Region de L’atlas au Royaume du Maroc; Japan International Cooperation Agency (JICA): Tokyo, Japan, 2004; Volume 1.
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Leung, L.R.; Qian, Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lee, J.W. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res. 2009, 93, 818–831. [Google Scholar] [CrossRef]
- Mahoney, K.; Alexander, M.A.; Thompson, G.; Barsugli, J.J.; Scott, J.D. Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Clim. Chang. 2012, 2, 125–131. [Google Scholar] [CrossRef]
- Pennelly, C.; Reuter, G.; Flesch, T. Verification of the WRF model for simulating heavy precipitation in Alberta. Atmos. Res. 2014, 135–136, 172–192. [Google Scholar] [CrossRef]
- Cassola, F.; Ferrari, F.; Mazzino, A. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmos. Res. 2015, 164–165, 210–225. [Google Scholar] [CrossRef]
- Boudhar, A.; Hanich, L.; Boulet, G.; Duchemin, B.; Berjamy, B.; Chehbouni, A. Evaluation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol. Sci. J. 2009, 54, 1094–1113. [Google Scholar] [CrossRef]
- El Khalki, E.M.; Tramblay, Y.; El Mehdi Saidi, M.; Bouvier, C.; Hanich, L.; Benrhanem, M.; Alaouri, M. Comparison of modeling approaches for flood forecasting in the High Atlas Mountains of Morocco. Arab. J. Geosci. 2018, 11, 410–425. [Google Scholar] [CrossRef]
- Khabba, S.; Jarlan, L.; Er-Raki, S.; Le Page, M.; Ezzahar, J.; Boulet, G.; Simonneaux, V.; Kharrou, M.H.; Hanich, L.; Chehbouni, G. The SudMed Program and the Joint International Laboratory TREMA: A decade of water transfer study in the soil-plant-atmosphere system over irrigated crops in semi-arid Area. Procedia Environ. Sci. 2013, 19, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Jarlan, L.; Khabba, S.; Er-Raki, S.; Le Page, M.; Hanich, L.; Fakir, Y.; Merlin, O.; Mangiarotti, S.; Gascoin, S.; Ezzahar, J.; et al. Remote sensing of water resources in semi-arid Mediterranean areas: The joint international laboratory TREMA. Int. J. Remote Sens. 2015, 36, 4879–4917. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; Van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-Preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Massari, C.; Brocca, L.; Moramarco, T.; Tramblay, Y.; Didon Lescot, J.-F. Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall. Adv. Water Resour. 2014, 74, 44–53. [Google Scholar] [CrossRef]
- Hersbach Hans, D.D. ERA-5reanalysis is in Production; European Centre for Medium-Range Weather Forecasts (ECMWF): Shinfield Park, UK, 2016. [Google Scholar]
- Lafore, J.P.; Stein, J.; Asencio, N.; Bougeault, P.; Ducrocq, V.; Duron, J.; Fischer, C.; Héreil, P.; Mascart, P.; Masson, V.; et al. The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys. 1998, 16, 90–109. [Google Scholar] [CrossRef]
- Lac, C.; Chaboureau, J.P.; Masson, V.; Pinty, J.P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; et al. Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev. 2018, 11, 1929–1969. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Fouquart, Y.; Bonnel, B. Computations of solar heating of the earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos. 1980, 53, 35–62. [Google Scholar]
- Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; et al. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev. 2013, 6, 929–960. [Google Scholar] [CrossRef] [Green Version]
- Noilhan, J.; Mahfouf, J.F. The ISBA land surface parameterisation scheme. Glob. Planet. Chang. 1996, 13, 145–159. [Google Scholar] [CrossRef]
- Caniaux, G.; Redelsperger, J.-L.; Lafore, J.-P. A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci. 1994, 51, 2046–2074. [Google Scholar] [CrossRef] [Green Version]
- Courtier, P.; Freydier, C.; Geleyn, J.-F.; Rabier, F.; Rochas, M. The arpege project at Météo-France. In Proceedings of the ECMWF Semininar on Numererical Methods in Atmospheric Modellling, Shinfield Park, UK, 9–13 September 1991; pp. 193–232. [Google Scholar]
- Sadiki, W.; Fischer, C.; Geleyn, J.-F. Mesoscale background error covariances: Recent results obtained with the limited-area model ALADIN over Morocco. Mon. Weather Rev. 2000, 128, 3927–3935. [Google Scholar] [CrossRef]
- Hdidou, F.Z.; Mordane, S.; Moll, P.; Mahfouf, J.-F.; Erraji, H.; Dahmane, Z. Impact of the variational assimilation of ground-based GNSS zenith total delay into AROME-Morocco model. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–13. [Google Scholar] [CrossRef]
- Sahlaoui, Z.; Mordane, S.; Wattrelot, E.; Mahfouf, J.F. Improving heavy rainfall forecasts by assimilating surface precipitation in the convective scale model AROME: A case study of the Mediterranean event of November 4, 2017. Meteorol. Appl. 2019, 27, 1–11. [Google Scholar] [CrossRef]
- Fourrié, N.; Nuret, M.; Brousseau, P.; Caumont, O.; Doerenbecher, A.; Wattrelot, E.; Moll, P.; Bénichou, H.; Puech, D.; Bock, O.; et al. The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX). Geosci. Model Dev. 2019, 12, 2657–2678. [Google Scholar] [CrossRef] [Green Version]
- Demargne, J.; Javelle, P.; Organde, D.; Garandeau, L.; Janet, B. Intégration des prévisions immédiates de pluie à haute-résolution pour une meilleure anticipation des crues soudaines. La Houille Blanche 2019, 3–24, 13–21. [Google Scholar] [CrossRef]
- Ravazzani, G.; Amengual, A.; Ceppi, A.; Homar, V.; Romero, R.; Lombardi, G.; Mancini, M. Potentialities of ensemble strategies for flood forecasting over the Milano urban area. J. Hydrol. 2016, 539, 237–253. [Google Scholar] [CrossRef]
- Amengual, A.; Romero, R.; Gómez, M.; Martín, G.A.; Alonso, S. A hydrometeorological modeling study of a flash-flood event over Catalonia, Spain. J. Hydrometeorol. 2007, 8, 282–303. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.; Lean, H.W. Scale-Selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Zheng, Y.; Alapaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated Kain–Fritsch scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J. HongandLim_JKMS_WSM6_2006. J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; Lemone, A.; Mitchell, E.; Ek, M.; Gayno, G.; Wegiel, W.; Cuenca, R. Implementation and verification of the unified Noah land-surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004. [Google Scholar]
- Maussion, F.; Scherer, D.; Finkelnburg, R.; Richters, J.; Yang, W.; Yao, T. WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci. 2011, 15, 1795–1817. [Google Scholar] [CrossRef] [Green Version]
- Mugume, I.; Waiswa, D.; Mesquita, M.D.S.; Reuder, J.; Basalirwa, C.P.K.; Bamutaze, Y.; Twinomuhangi, R.; Tumwine, F.; Otim, J.S.; Ngailo, J.T.; et al. Assessing the performance of WRF Model in simulating rainfall over Western Uganda. J. Climatol. Weather Forecast. 2017, 5, 1–9. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences: An Introduction; Academic Press: Cambridge, MA, USA, 1995; ISBN 9780080541723. [Google Scholar]
- United States Department of Agriculture (USDA). Urban Hydrology for Small Watersheds; United States Department of Agriculture (USDA): Washington, DC, USA, 1986.
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Antecedent wetness conditions based on ERS scatterometer data. J. Hydrol. 2009, 364, 73–87. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouaicha, R.; Brocca, L.; Dorigo, W.; Bouvier, C.; Camici, S.; Servat, E. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol. Earth Syst. Sci. 2012, 16, 4375–4386. [Google Scholar] [CrossRef] [Green Version]
- US Army Corps of Engineers. Hydrologic Modelling System HEC-HMS; US Army Corps of Engineers: Washington, DC, USA, 2015. [Google Scholar]
- Edinbungh, A.A. On least squares and linear combinations of observations. Proc. R. Soc. Edinb. 1934, 55, 42–48. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Chifflard, P.; Kranl, J.; Strassen, G.Z.; Zepp, H. The significance of soil moisture in forecasting characteristics of flood events. A statistical analysis in two nested catchments. J. Hydrol. Hydromech. 2018, 66, 1–11. [Google Scholar] [CrossRef] [Green Version]
Events Dates | Cumulative Rain [mm] | Intensity Max [mm/h] | Q Max [m3/s] | Duration [Hours] |
---|---|---|---|---|
Rheraya | ||||
29 January 2014 | 6.37 | 1.14 | 40.60 | 9 |
10 February 2014 | 7.30 | 1.28 | 20.60 | 15 |
12 March 2014 | 20.59 | 1.91 | 75.80 | 24 |
29 March 2014 | 10.78 | 1.45 | 17.90 | 18 |
2 April 2014 | 8.99 | 1.36 | 18.60 | 24 |
21 April 2014 | 14.47 | 2.28 | 43.50 | 12 |
21 September 2014 | 10.85 | 0.84 | 29.10 | 30 |
4 November 2014 | 18.03 | 2.62 | 51.60 | 21 |
9 November 2014 | 12.27 | 1.36 | 42.20 | 21 |
21 November 2014 | 81.89 | 4.35 | 103.40 | 48 |
27 November 2014 | 38.98 | 3.85 | 80.50 | 48 |
23 March 2016 | 11.69 | 1.25 | 22.91 | 24 |
4 May 2016 | 14.53 | 1.91 | 7.64 | 21 |
Ourika | ||||
21 September 2014 | 22.49 | 1.30 | 22.3 | 21 |
4 November 2014 | 27.69 | 1.15 | 18.9 | 21 |
9 November 2014 | 30.57 | 1.27 | 23.9 | 15 |
21 November 2014 | 103.20 | 8.25 | 424.3 | 48 |
23 March 2016 | 6.15 | 0.95 | 54.5 | 18 |
4 May 2016 | 25.72 | 1.42 | 158.2 | 24 |
21 July 2016 | 2.33 | 0.40 | 82.4 | 9 |
Observation | ||||
---|---|---|---|---|
yes | no | |||
Forecast | yes | a: hits | b: false alarms | a + b: yes forecasts |
no | c: misses | d: correct rejection | c + d: no forecasts | |
a + c: yes observed | b + d: no observed | N: Total forecasts |
Events | BIASQ [%] | BIASV [%] | Nash |
---|---|---|---|
Rheraya | |||
29 January 2014 | −11.75 | −14.39 | 0.81 |
10 February 2014 | −3.65 | 16.73 | 0.92 |
12 March 2014 | −14.59 | 7.87 | 0.76 |
29 March2014 | −4.00 | 11.27 | 0.91 |
2 April 2014 | 6.20 | 7.00 | 0.82 |
21 April 2014 | 4.12 | 8.54 | 0.77 |
21 September 2014 | −12.20 | −4.28 | 0.51 |
4 November 2014 | −0.43 | 2.95 | 0.93 |
9 November 2014 | −3.15 | 5.09 | 0.82 |
21 November 2014 | −2.51 | −10.65 | 0.51 |
27 November 2014 | 0.28 | 8.88 | 0.94 |
23 March 2016 | −2.31 | 3.64 | 0.89 |
4 May2016 | 11.89 | 7.61 | 0.63 |
Mean BIAS [%] | −2.47 | 3.87 | 0.79 |
Ourika | |||
21 September 2014 | −24.71 | −10.05 | 0.62 |
4 November 2014 | 2.14 | 6.43 | 0.81 |
9 November 2014 | −3.78 | 1.07 | 0.89 |
21 November 2014 | 0.63 | 17.38 | 0.63 |
23 March 2016 | −0.57 | 8.98 | 0.30 |
4 May 2016 | 0.56 | 11.29 | 0.81 |
21 July 2016 | 3.67 | 0.52 | 0.53 |
Mean BIAS [%] | −3.15 | 5.09 | 0.66 |
Metrics | QWRF [m3/s] | QALADIN [m3/s] | QAROME [m3/s] | QMean [m3/s] |
---|---|---|---|---|
Rheraya | ||||
RMSE [m3/s] | 84.97 | 37.22 | 54.85 | 34.50 |
BIAS [%] | 176.92 | −29.46 | 145.14 | 61.35 |
Ourika | ||||
RMSE [m3/s] | 207.50 | 133.24 | 233.22 | 60.08 |
BIAS [%] | 35.46 | −37.62 | 163.37 | 16.83 |
Forecasted Discharge | Soil Moisture Data | Rheraya | RMSE [m3/s] | BIAS [%] | EFF | Ourika | RMSE [m3/s] | BIAS [%] | EFF |
QWRF [m3/s] | ESA-CCI | 23.07 | 83.55 | 0.92 | 71.36 | 81.76 | 0.73 | ||
ERA5 | 13.24 | 17.26 | 0.87 | 35.94 | 94.53 | 0.9 | |||
Thetaprobes | 25.36 | 90.09 | 0.78 | 80.37 | 76.84 | 0.77 | |||
QALADIN [m3/s] | ESA-CCI | 19.1 | 34.2 | 0.69 | 115.65 | −65.28 | −5.52 | ||
ERA5 | 26.1 | 18.93 | 0.9 | 39.57 | 69.39 | 0.97 | |||
Thetaprobes | 29.07 | 17.07 | 0.39 | 122.53 | −84.67 | −0.14 | |||
QAROME [m3/s] | ESA-CCI | 25.97 | 65.84 | 0.77 | 99.45 | 221.08 | 0.65 | ||
ERA5 | 14.12 | 1.7 | 0.83 | 42.41 | 109.56 | 0.12 | |||
Thetaprobes | 28.01 | 70.08 | 0.9 | 119.45 | 248.59 | 0.23 | |||
QMean [m3/s] | ESA-CCI | 19.91 | 56.11 | 0.71 | 52.77 | 55.7 | 0.79 | ||
ERA5 | 21.17 | 62.43 | 0.85 | 38.15 | 91.16 | 0.95 | |||
Thetaprobes | 21.46 | 59.08 | 0.61 | 59.74 | 56.66 | −0.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Khalki, E.M.; Tramblay, Y.; Amengual, A.; Homar, V.; Romero, R.; Saidi, M.E.M.; Alaouri, M. Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco. Water 2020, 12, 437. https://doi.org/10.3390/w12020437
El Khalki EM, Tramblay Y, Amengual A, Homar V, Romero R, Saidi MEM, Alaouri M. Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco. Water. 2020; 12(2):437. https://doi.org/10.3390/w12020437
Chicago/Turabian StyleEl Khalki, El Mahdi, Yves Tramblay, Arnau Amengual, Victor Homar, Romualdo Romero, Mohamed El Mehdi Saidi, and Meriem Alaouri. 2020. "Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco" Water 12, no. 2: 437. https://doi.org/10.3390/w12020437