Impact Analysis of Univariate and Multivariate Bias Correction on Rice Irrigation Water Needs in Jiangxi Province, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Observation
2.2.2. Regional Climate Model
2.2.3. Rice Crop Information
3. Methods
3.1. Univariate Bias Correction (UBC)
3.2. Multivariate Bias Correction (MBC)
3.3. Irrigation Water Needs (IWNs)
3.4. Statistical Analysis
4. Results
4.1. Interrelation of Climate Variables
4.2. Spatio-Temporal Bias Variability
4.3. Rice Irrigation Water Needs (IWNs) Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abrreviations
References
- IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 9781107641655. [Google Scholar]
- Reichler, T.; Kim, J. How well do coupled models simulate today’s climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–312. [Google Scholar] [CrossRef]
- Rummukainen, M. State-of-the-art with regional climate models. Clim Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate bias correction of climate model output: Matching marginal distributions and intervariable dependence structure. J. Clim. 2016, 29, 7045–7064. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Volosciuk, C.; Maraun, D.; Semenov, V.A.; Park, W. Extreme precipitation in an atmosphere general circulation model: Impact of horizontal and vertical model resolutions. J. Clim. 2015, 28, 1184–1205. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, R.; Sharma, A. A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: Implications for downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “should we apply bias correction to global and regional climate model data? ” Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef] [Green Version]
- De Cáceres, M.; Martin-StPaul, N.; Turco, M.; Cabon, A.; Granda, V. Estimating daily meteorological data and downscaling climate models over landscapes. Environ. Model. Softw. 2018, 108, 186–196. [Google Scholar] [CrossRef]
- Buonomo, E.; Jones, R.; Huntingford, C.; Hannaford, J. On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q. J. R. Meteorol. Soc. 2007, 133, 65–81. [Google Scholar] [CrossRef]
- Maraun, D. Bias correcting climate change simulations—A critical review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Ngai, S.T.; Tangang, F.; Juneng, L. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Glob. Planet. Chang. 2017, 149, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Schoetter, R.; Hoffmann, P.; Rechid, D.; Schlünzen, K.H. Evaluation and bias correction of regional climate model results using model evaluation measures. J. Appl. Meteorol. Climatol. 2012, 51, 1670–1684. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Frankl, A.; Bao, A.; De Maeyer, P. Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: A case study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Koutroulis, A.G.; Daliakopoulos, I.N.; Tsanis, I.K. A method to preserve trends in quantile mapping bias correction of climate modeled temperature. Earth Syst. Dyn. 2017, 8, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Shabalova, M.; van Deursen, W.; Buishand, T. Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Clim. Res. 2003, 23, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; van Deursen, W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Terink, W.; Hurkmans, R.T.W.L.; Torfs, P.J.J.F.; Uijlenhoet, R. Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 5377–5413. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Wilcke, R.A.I.; Mendlik, T.; Gobiet, A. Multi-variable error correction of regional climate models. Clim. Change 2013, 120, 871–887. [Google Scholar] [CrossRef] [Green Version]
- Rocheta, E.; Evans, J.P.; Sharma, A. Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environ. Res. Lett. 2014, 9, 124010. [Google Scholar] [CrossRef]
- Vrac, M.; Friederichs, P. Multivariate-intervariable, spatial, and temporal-bias correction. J. Clim. 2015, 28, 218–237. [Google Scholar] [CrossRef]
- Meyer, J.; Kohn, I.; Stahl, K.; Hakala, K.; Seibert, J.; Cannon, A.J. Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments. Hydrol. Earth Syst. Sci. 2019, 23, 1339–1354. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Fischer, E.M.; Lange, S. The effect of univariate bias adjustment on multivariate hazard estimates. Earth Syst. Dyn. 2019, 10, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.C.; Heinrich, G.; Suklitsch, M.; Gobiet, A.; Stoffel, M.; Fuhrer, J. Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change. Clim. Chang. 2014, 127, 521–534. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.; Sonnenborg, T.O.; Stisen, S.; Seaby, L.P.; Christensen, B.S.B.; Hinsby, K. Climate change effects on irrigation demands and minimum stream discharge: Impact of bias-correction method. Hydrol. Earth Syst. Sci. 2012, 16, 4675–4691. [Google Scholar] [CrossRef] [Green Version]
- Räty, O.; Räisänen, J.; Bosshard, T.; Donnelly, C. Intercomparison of univariate and joint bias correction methods in changing climate from a hydrological perspective. Climate 2018, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, C.; Brissette, F.P.; Chen, H.; Wang, M.; Essou, G.R.C. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. J. Hydrol. 2018, 560, 326–341. [Google Scholar] [CrossRef]
- Huang, J.; Sun, S.; Zhang, J. Detection of trends in precipitation during 1960–2008 in Jiangxi Province, Southeast China. Theor. Appl. Climatol. 2013, 114, 237–251. [Google Scholar] [CrossRef]
- Shihua, L.; Jiangtao, X.; Ping, N.; Jing, Z.; Hongshu, W. Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China. Int. J. Agric. Biol. Eng. 2014, 7, 28–36. [Google Scholar]
- Nicholas, R.E.; Battisti, D.S. Empirical downscaling of high-resolution regional precipitation from large-scale reanalysis fields. J. Appl. Meteorol. Climatol. 2012, 51, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Qiao, F.; Naylor, R.L.; Falcon, W.P.; Burke, M.; Rozelle, S.; Battisti, D. Impacts of El Nino-Southern Oscillation events on China’s rice production. J. Geogr. Sci. 2010, 20, 3–16. [Google Scholar] [CrossRef]
- Lu, X.; Bai, H.; Mu, X. Explaining the evaporation paradox in Jiangxi Province of China: Spatial distribution and temporal trends in potential evapotranspiration of Jiangxi Province from 1961 to 2013. Int. Soil Water Conserv. Res. 2016, 4, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Jing, Y.; Zhang, F.; Qiu, R.; Wido, H. Application of the simple biosphere model 2 (SiB2) with irrigation module to a typical low-hilly red soil farmland and the sensitivity analysis of modeled energy fluxes in southern China. Water 2019, 11, 1128. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-L.; Pu, C.; Ren, Y.-X.; Zhao, X.-L.; Zhao, X.; Chen, F.; Xiao, X.-P.; Zhang, H.-L. Yield variation of double-rice in response to climate change in Southern China. Eur. J. Agron. 2016, 81, 161–168. [Google Scholar] [CrossRef]
- CORDEX-EA Coordinated regional climate downscaling experiment in East Asia. Available online: http://cordex-ea.climate.go.kr. (accessed on 30 January 2020).
- Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core of the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Martin, G.M.; Ringer, M.A.; Pope, V.D.; Jones, A.; Dearden, C.; Hinton, T.J. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Clim. 2006, 19, 1274–1301. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Diallo, I.; Bain, C.L.; Gaye, A.T.; Moufouma-Okia, W.; Niang, C.; Dieng, M.D.B.; Graham, R. Simulation of the West African monsoon onset using the HadGEM3-RA regional climate model. Clim. Dyn. 2014, 43, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 2002, 38, 1037. [Google Scholar] [CrossRef]
- Delang, B.; Xiaohe, L. International rice research notes. In International Rice Research Notes; Dedolp, C., Ed.; International Rice Research Institute: Manila, Philippines, 1996; p. 42. [Google Scholar]
- Allen, R.G.; Perreira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Yan, H.; Xiao, X.; Huang, H.; Liu, J.; Chen, J.; Bai, X. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data. Chin. Geogr. Sci. 2014, 24, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Ten Berge, H.F.M.; Uithol, P.W.J.; Henstra, P.; Xiaohua, P.; Weihong, L. Nutrient flows in selected farms of Jiangsu and Jiangxi provinces of China; Data report NutChina field survey 1997–1998; Plant Research International: Wageningen, The Netherlands, December 2000. [Google Scholar]
- Liu, F.P.; Liang, J.; Xiong, X.G. Analysis of rice water requirement rule and irrigation water utilization variation in Jiangxi. Acta Agric. Jiangxi 2011, 6, 16–18. [Google Scholar]
- Cai, J. Humidity: Calculate Water Vapor Measures from Temperature and Dew Point; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air. Am. Meteorol. Soc. 2004, 86, 225–234. [Google Scholar] [CrossRef]
- Klemeš, V. Operational testing of hydrological simulation models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Heo, J.-H.; Ahn, H.; Shin, J.-Y.; Kjeldsen, T.R.; Jeong, C. Probability distributions for a quantile mapping technique for a bias correction of precipitation data: A case study to precipitation data under climate change. Water 2019, 11, 1475. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L. qmap: Statistical transformations for post-processing climate model output 2016. Available online: https://cran.r-project.org/web/packages/qmap/qmap.pdf (accessed on 30 January 2020).
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Bürger, G.; Schulla, J.; Werner, A.T. Estimates of future flow, including extremes, of the Columbia River headwaters. Water Resour. Res. 2011, 47, 1–18. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Pitié, F.; Kokaram, A.C.; Dahyot, R. Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 2007, 107, 123–137. [Google Scholar] [CrossRef]
- Sun, Z.; Jia, S.F.; Lv, A.F.; Yang, K.J.; Svensson, J.; Gao, Y.C. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario. Earth Syst. Dyn. Discuss. 2015, 6, 2181–2210. [Google Scholar] [CrossRef]
- Boonwichai, S.; Shrestha, S.; Babel, M.S.; Weesakul, S.; Datta, A. Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. J. Clean. Prod. 2018, 198, 1157–1164. [Google Scholar] [CrossRef]
- Bos, M.G.; Kselik, R.A.L.; Allen, R.G.; Molden, D. Water Requirements for Irrigation and the Environment; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-8947-3. [Google Scholar]
- Smith, M. CROPWAT—A Computer Program for Irrigation Planning and Management; FAO: Rome, Italy, 1992; Volume 46. [Google Scholar]
- Burt, C.M.; Mutziger, A.; Howes, D.J.; Solomon, K.H.; Training, I. Evaporation from Irrigated Agricultural Land in California; California Polytechnic State University: San Luis Obispo, CA, USA, 2002. [Google Scholar]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Switanek, M.B.; Troch, P.A.; Castro, C.L.; Leuprecht, A.; Chang, H.-I.; Mukherjee, R.; Demaria, E.M.C. Scaled distribution mapping: A bias correction method that preserves raw climate model projected changes. Hydrol. Earth Syst. Sci. 2017, 21, 2649–2666. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Feng, J.; Xu, Z.; Yin, B.; Shi, H.; Qi, J. Statistical bias correction for simulated wind speeds over CORDEX-East Asia. Earth Sp. Sci. 2019, 6, 200–211. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Wang, S.; Yang, X.; Wang, L.; Baig, M.H.A.; Chi, W.; Wang, Z. Evaluation of spatial and temporal performances of ERA-interim precipitation and temperature in mainland China. J. Clim. 2018, 31, 4347–4365. [Google Scholar] [CrossRef]
- Zhang, S.; Lü, S.; Bao, Y.; Ma, D. Sensitivity of precipitation over China to different cumulus parameterization schemes in RegCM4. J. Meteorol. Res. 2015, 29, 119–131. [Google Scholar] [CrossRef]
Station | Latitude | Longitude | Elevation (m) |
---|---|---|---|
Ganxian | 25.52 | 115.00 | 137.5 |
Guangchang | 26.51 | 116.20 | 143.8 |
Guixi | 28.19 | 117.15 | 60.8 |
Ji’an | 27.03 | 114.55 | 71.2 |
Jingdezhen | 29.18 | 117.12 | 61.5 |
Lushan | 29.35 | 115.59 | 1164.5 |
Nanchang | 28.36 | 115.55 | 46.9 |
Nancheng | 27.35 | 116.39 | 80.8 |
Poyang | 29.00 | 116.41 | 40.1 |
Suichuan | 26.20 | 114.30 | 126.1 |
Xunwu | 24.57 | 115.39 | 303.9 |
Yichuan | 27.48 | 114.23 | 131.3 |
Yushan | 28.41 | 118.15 | 116.3 |
Growth Stages | Duration (days) | Kc | SAT (mm/month) | WL (mm/month) | Perc (mm/day) |
---|---|---|---|---|---|
Land Preparation | 30 | - | 200 | - | - |
Initial | 30 | 1.04 | - | 100 | 5 |
Developing | 30 | 1.25 | - | - | 5 |
Middle | 40 | 1.46 | - | - | 5 |
Late | 30 | 1.03 | - | - | 5 |
Station | Potential Evapotranspiration (ETo) | Effective Rainfall (Peff) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Corr | MAE | Corr | MAE | |||||||||
R | U | M | R | U | M | R | U | M | R | U | M | |
Ganxian | 0.40 | 0.50 | 0.51 | 1.07 | 0.94 | 0.94 | 0.17 | 0.13 | 0.12 | 2.15 | 1.86 | 1.77 |
Guangchang | 0.49 | 0.56 | 0.56 | 0.92 | 0.80 | 0.81 | 0.23 | 0.24 | 0.22 | 2.19 | 1.66 | 1.57 |
Guixi | 0.58 | 0.58 | 0.59 | 0.89 | 0.87 | 0.81 | 0.33 | 0.33 | 0.34 | 2.13 | 1.65 | 1.55 |
Jian | 0.55 | 0.54 | 0.55 | 0.94 | 0.92 | 0.88 | 0.27 | 0.26 | 0.21 | 2.12 | 1.57 | 1.58 |
Jingdezhen | 0.53 | 0.56 | 0.56 | 0.90 | 0.82 | 0.79 | 0.25 | 0.20 | 0.15 | 2.10 | 1.62 | 1.58 |
Lushan | 0.35 | 0.29 | 0.32 | 1.23 | 1.36 | 1.01 | 0.10 | 0.08 | 0.08 | 2.23 | 2.03 | 2.09 |
Nanchang | 0.47 | 0.49 | 0.52 | 1.01 | 0.92 | 0.80 | 0.27 | 0.30 | 0.31 | 1.94 | 1.38 | 1.29 |
Nancheng | 0.56 | 0.57 | 0.59 | 0.95 | 0.91 | 0.89 | 0.26 | 0.31 | 0.33 | 2.18 | 1.60 | 1.50 |
Poyang | 0.44 | 0.47 | 0.48 | 1.06 | 0.90 | 0.82 | 0.26 | 0.27 | 0.27 | 1.83 | 1.25 | 1.19 |
Suichuan | 0.54 | 0.55 | 0.54 | 1.02 | 0.91 | 0.94 | 0.19 | 0.13 | 0.10 | 2.33 | 2.10 | 2.07 |
Xunwu | 0.27 | 0.39 | 0.39 | 0.87 | 0.79 | 0.78 | 0.20 | 0.22 | 0.21 | 2.47 | 2.15 | 2.09 |
Yichuan | 0.57 | 0.57 | 0.60 | 0.90 | 0.89 | 0.81 | 0.22 | 0.21 | 0.20 | 2.20 | 1.74 | 1.74 |
Yushan | 0.61 | 0.59 | 0.61 | 1.00 | 0.93 | 0.90 | 0.34 | 0.37 | 0.37 | 2.22 | 1.68 | 1.58 |
Mean | 0.49 | 0.51 | 0.53 | 0.98 | 0.92 | 0.86 | 0.24 | 0.23 | 0.22 | 2.16 | 1.71 | 1.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanggoro, W.; Yuanshu, J.; Cudemus, L.; Zhihao, J. Impact Analysis of Univariate and Multivariate Bias Correction on Rice Irrigation Water Needs in Jiangxi Province, China. Water 2020, 12, 381. https://doi.org/10.3390/w12020381
Hanggoro W, Yuanshu J, Cudemus L, Zhihao J. Impact Analysis of Univariate and Multivariate Bias Correction on Rice Irrigation Water Needs in Jiangxi Province, China. Water. 2020; 12(2):381. https://doi.org/10.3390/w12020381
Chicago/Turabian StyleHanggoro, Wido, Jing Yuanshu, Leila Cudemus, and Jing Zhihao. 2020. "Impact Analysis of Univariate and Multivariate Bias Correction on Rice Irrigation Water Needs in Jiangxi Province, China" Water 12, no. 2: 381. https://doi.org/10.3390/w12020381
APA StyleHanggoro, W., Yuanshu, J., Cudemus, L., & Zhihao, J. (2020). Impact Analysis of Univariate and Multivariate Bias Correction on Rice Irrigation Water Needs in Jiangxi Province, China. Water, 12(2), 381. https://doi.org/10.3390/w12020381