Determining the Relevant Scale to Analyze the Quality of Regional Groundwater Resources While Combining Groundwater Bodies, Physicochemical and Biological Databases in Southeastern France
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, the Provence-Alpes-Côte d’Azur Region
2.2. The Spatial Reference System for Groundwater Bodies
2.3. The SISE-Eaux Database
2.4. Statistical Treatments
3. Results
3.1. Grouping Groundwater Bodies
3.2. Discriminant Analysis and Machine Learning
3.3. PCA on the Full Regional Dataset, Groups and Sub-Groups
3.4. Distribution and PCA in Group 1 and Sub-Groups
3.5. Intensity of Bacteriological Contamination
4. Discussion
4.1. Groups of Groundwater Bodies
4.2. An Easier Analysis: Example of Group 1
4.2.1. Dissolved Load and Chemical Profile
4.2.2. Bacteriological Contamination
4.2.3. Metals, Arsenic, and Redox Processes
4.3. Focus on Bacteriological Contamination Levels and Surveillance Strategy: Group 1 Versus Group 8
4.4. Limits of the Method and Difficulties Encountered
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gallay, A.; Valk, H.D.; Cournot, M.; Ladeuil, B.; Hemery, C.; Castor, C.; Bon, F.; Mégraud, F.; Cann, P.L.; Desenclos, J.C. A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin. Microbiol. Infect. 2006, 12, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H.G.; Renca, S.; Saraiva, J. A case study on geochemical anomaly identification through principal components analysis supplementary projection. Appl. Geochem. 2003, 18, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science (80-) 2000, 289, 284–288. [Google Scholar]
- Falkenmark, M.; Folke, C.; Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2003, 358, 1957–1972. [Google Scholar]
- Wendland, F.; Berthold, G.; Blum, A.; Elsass, P.; Fritsche, J.-G.; Kunkel, R.; Wolter, R. Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination 2008, 226, 160–168. [Google Scholar] [CrossRef]
- Bárdossy, A. Copula-based geostatistical models for groundwater quality parameters. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma 2010, 159, 390–398. [Google Scholar] [CrossRef]
- Buvaneshwari, S.; Riotte, J.; Sekhar, M.; Kumar, M.S.M.; Sharma, A.K.; Duprey, J.L.; Audry, S.; Giriraja, P.R.; Praveenkumarreddy, Y.; Moger, H.; et al. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer. Sci. Total Environ. 2017, 579, 838–847. [Google Scholar] [CrossRef]
- Laaksoharju, M.; Gascoyne, M.; Gurban, I. Understanding groundwater chemistry using mixing models. Appl. Geochem. 2008, 23, 1921–1940. [Google Scholar] [CrossRef]
- Montcoudiol, N.; Molson, J.; Lemieux, J.-M. Groundwater geochemistry of the Outaouais Region (Québec, Canada): A regional-scale study. Hydrogeol. J. 2015, 23, 377–396. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Department of the Interior: Denver, CO, USA, 1999.
- Wang, J.L.; Yang, Y.S. An approach to catchment-scale groundwater nitrate risk assessment from diffuse agricultural sources: A case study in the Upper Bann, Northern Ireland. Hydrol. Process. 2008, 22, 4274–4286. [Google Scholar] [CrossRef]
- Ward, R.S.; Streetly, M.J.; Singleton, A.J.; Sears, R. A framework for monitoring regional groundwater quality. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 271–281. [Google Scholar] [CrossRef]
- Yang, Y.S.; Wang, L. Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: A case study. Hydrol. Sci. J. 2010, 55, 1206–1216. [Google Scholar] [CrossRef] [Green Version]
- Chidichimo, F.; Biase, M.D.; Costabile, A.; Cuiuli, E.; Reillo, O. GuEstNBL: The software for the Guided Estimation of the Natural Background Levels of the aquifers. Water 2020, 12, 2728. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Martinsek, A.T.; Hackley, K.C. Estimating Background and Threshold Nitrate Concentrations Using Probability Graphs. Groundwater 2006, 44, 697–709. [Google Scholar] [CrossRef]
- Roux, J.-C. The evolution of groundwater quality in France: Perspectives for enduring use for human consumption. Sci. Total Environ. 1995, 171, 3–16. [Google Scholar] [CrossRef]
- Maréchal, J.-C.; Rouillard, J. Groundwater in France: Resources, Use and Management Issues. In Sustainable Groundwater Management: A Comparative Analysis of French and Australian Policies and Implications to Other Countries; Rinaudo, J.-D., Holley, C., Barnett, S., Montginoul, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–45. ISBN 978-3-030-32766-8. [Google Scholar]
- Martínez Navarrete, C.; Grima Olmedo, J.; Durán Valsero, J.J.; Gómez Gómez, J.D.; Luque Espinar, J.A.; de la Orden Gómez, J.A. Groundwater protection in Mediterranean countries after the European water framework directive. Environ. Geol. 2008, 54, 537–549. [Google Scholar] [CrossRef]
- European Commission. Guidance on Groundwater Status and Trend Assessment, Guidance Document #18; European Communities: Luxembourg, 2009; ISBN 978-92-79-11374-1. [Google Scholar]
- Tiouiouine, A.; Yameogo, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Moulin, M.; Bouramtane, T.; Bahaj, T.; Morarech, M.; Kacimi, I. Dimension Reduction and Analysis of a 10-Year Physicochemical and Biological Water Database Applied to Water Resources Intended for Human Consumption in the Provence-Alpes-Côte d’Azur Region, France. Water 2020, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. In Proceedings of the AMS conference on math challenges of the 21st century, Los Angeles, CA, USA, 7–12 August 2000. [Google Scholar]
- Machiwal, D.; Jha, M.K. Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. J. Hydrol. Reg. Stud. 2015, 4, 80–110. [Google Scholar] [CrossRef] [Green Version]
- Carrière, S.D.; Chalikakis, K.; Sénéchal, G.; Danquigny, C.; Emblanch, C. Combining Electrical Resistivity Tomography and Ground Penetrating Radar to study geological structuring of karst Unsaturated Zone. J. Appl. Geophys. 2013, 94, 31–41. [Google Scholar] [CrossRef]
- Monteny, V.d.; Radakovitch, O.; Vallet-Coulomb, C.; Blavoux, B.; Hermitte, D.; Valles, V. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (Southern France). Appl. Geochem. 2008, 23, 2337–2349. [Google Scholar] [CrossRef]
- Torres-Rondon, L.; Carrière, S.D.; Chalikakis, K.; Valles, V. An integrative geological and geophysical approach to characterize a superficial deltaic aquifer in the Camargue plain, France. Comptes Rendus Geosci. 2013, 345, 241–250. [Google Scholar] [CrossRef]
- Mackay, A.W.; Davidson, T.; Wolski, P.; Mazebedi, R.; Masamba, W.R.L.; Huntsman-Mapila, P.; Todd, M. Spatial and Seasonal Variability in Surface Water Chemistry in the Okavango Delta, Botswana: A Multivariate Approach. Wetlands 2011, 31, 815. [Google Scholar] [CrossRef]
- Rezende Filho, A.T.; Furian, S.; Victoria, R.L.; Mascré, C.; Valles, V.; Barbiero, L. Hydrochemical variability at the upper paraguay basin and pantanal wetland. Hydrol. Earth Syst. Sci. 2012, 16, 2723–2737. [Google Scholar] [CrossRef] [Green Version]
- Barbel-Périneau, A.; Barbiero, L.; Danquigny, C.; Emblanch, C.; Mazzilli, N.; Babic, M.; Simler, R.; Valles, V. Karst flow processes explored through analysis of long-term unsaturated-zone discharge hydrochemistry: A 10-year study in Rustrel, France. Hydrogeol. J. 2019, 27, 1711–1723. [Google Scholar] [CrossRef]
- Blondel, T.; Emblanch, C.; Dudal, Y.; Batiot-Guilhe, C.; Travi, Y.; Gaffet, S. Transit Time Environmental Tracing from Dissolved Organic Matter Fluorescence Properties in Karstic Aquifers. Application to Different Flows of Fontaine de Vaucluse Experimental Basin (SE France) BT—Advances in Research in Karst Media. In Environmental Earth Sciences; Andreo, B., Carrasco, F., Durán, J.J., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 143–149. [Google Scholar]
- Kandylis, K. Toxicology of Sulfur in Ruminants: Review. J. Dairy Sci. 1984, 67, 2179–2187. [Google Scholar] [CrossRef]
- Greven, M.; Green, S.; Robinson, B.; Clothier, B.; Vogeler, I.; Agnew, R.; Neal, S.; Sivakumaran, S. The impact of CCA-treated posts in vineyards on soil and ground water. Water Sci. Technol. 2007, 56, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.-G.; Vogeler, I.; Bolan, N.S.; Clothier, B.; Green, S.; Kennedy, J. Mobility of copper, chromium and arsenic from treated timber into grapevines. Sci. Total Environ. 2007, 388, 35–42. [Google Scholar] [CrossRef]
- Cannavo, P.; Richaume, A.; Renault, P.; Emblanch, C.; Bertuzzi, P.; Lafolie, F. Denitrification in the upper vadose zone layers: A comparison between a fluvic hypercalcaric cambisol and a haplic calcisol. Agronomie 2002, 22, 479–488. [Google Scholar] [CrossRef]
- Onorati, G.; Di Meo, T.; Bussettini, M.; Fabiani, C.; Farrace, M.G.; Fava, A.; Ferronato, A.; Mion, F.; Marchetti, G.; Martinelli, A.; et al. Groundwater quality monitoring in Italy for the implementation of the EU water framework directive. Phys. Chem. Earth Parts A/B/C 2006, 31, 1004–1014. [Google Scholar] [CrossRef]
- Cruz, J.V.; Pacheco, D.; Cymbron, R.; Mendes, S. Monitoring of the groundwater chemical status in the Azores archipelago (Portugal) in the context of the EU water framework directive. Environ. Earth Sci. 2010, 61, 173–186. [Google Scholar] [CrossRef]
- Wendland, F.; Hannappel, S.; Kunkel, R.; Schenk, R.; Voigt, H.J.; Wolter, R. A procedure to define natural groundwater conditions of groundwater bodies in Germany. Water Sci. Technol. 2005, 51, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Lijzen, J.P.A.; Otte, P.; van Dreumel, M. Towards sustainable management of groundwater: Policy developments in The Netherlands. Sci. Total Environ. 2014, 485–486, 804–809. [Google Scholar] [CrossRef] [PubMed]
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Variance % | 34.07 | 11.00 | 10.39 | 7.32 | 6.60 | 6.27 | 5.82 | 5.03 | 4.35 | 3.21 | 2.87 |
Enteroc. | −0.01 | 0.57 | 0.68 | −0.01 | 0.01 | −0.02 | 0.03 | −0.05 | −0.02 | −0.01 | −0.11 |
E. coli | −0.01 | 0.60 | 0.66 | −0.01 | 0.01 | 0.02 | −0.02 | 0.00 | 0.01 | 0.02 | 0.09 |
EC | 0.98 | 0.03 | −0.02 | −0.05 | 0.03 | −0.05 | 0.02 | −0.01 | 0.05 | −0.1 | −0.07 |
HCO3 | 0.63 | 0.43 | −0.32 | 0.16 | −0.08 | −0.04 | 0.12 | 0.22 | 0.46 | −0.01 | −0.04 |
H+ | 0.29 | −0.13 | 0.09 | 0.39 | −0.32 | 0.71 | −0.01 | −0.35 | 0.08 | 0.04 | −0.09 |
Ca | 0.84 | 0.30 | −0.26 | 0.04 | 0.07 | −0.02 | 0.01 | 0.10 | −0.02 | −0.02 | −0.33 |
Cl | 0.76 | −0.41 | 0.35 | −0.20 | −0.07 | −0.02 | −0.13 | 0.02 | 0.11 | −0.21 | 0.05 |
Mg | 0.69 | 0.22 | −0.19 | 0.07 | 0.10 | −0.10 | 0.29 | −0.36 | 0.06 | −0.00 | 0.45 |
K | 0.70 | −0.22 | 0.19 | −0.09 | 0.01 | −0.05 | −0.13 | 0.11 | 0.04 | 0.62 | 0.04 |
Na | 0.75 | −0.44 | 0.37 | −0.19 | −0.07 | −0.06 | −0.10 | 0.03 | 0.10 | −0.18 | 0.03 |
SO4 | 0.75 | 0.05 | −0.09 | −0.06 | 0.23 | −0.10 | 0.11 | −0.33 | −0.45 | 0.02 | −0.17 |
Fe | 0.05 | −0.08 | 0.07 | 0.73 | 0.20 | −0.37 | −0.51 | −0.12 | 0.05 | −0.04 | 0.01 |
Mn | 0.19 | −0.29 | 0.27 | 0.53 | −0.18 | −0.12 | 0.55 | 0.36 | −0.22 | −0.02 | 0.02 |
NO3 | 0.50 | 0.26 | −0.17 | 0.05 | 0.09 | 0.41 | −0.34 | 0.42 | −0.34 | −0.08 | 0.24 |
As | −0.12 | −0.22 | 0.17 | 0.07 | 0.85 | 0.31 | 0.19 | 0.08 | 0.19 | −0.01 | −0.03 |
Group | Sub-Group | MESO (FRDG Code) | Number of Water Samples |
---|---|---|---|
1 | 1a | 104, 357, 359, 521, 531 | 607 |
1b | 213, 218, 247, 513 | 196 | |
1c | 356, 386, 394 | 101 | |
1d | 139, 179, 323, 354, 518 | 398 | |
1e | 249 | 12 | |
2 | 2a | 107, 358, 514 | 165 |
2b | 168, 169 | 330 | |
2c | 205, 504 | 43 | |
2d | 215, 369 | 24 | |
3 | 3a | 370, 167, 343 | 74 |
3a | 420 | 44 | |
3b | 196, 170 | 105 | |
3b | 166 | 20 | |
4 | 4a | 321, 174, 423, 407 | 388 |
4b | 243, 108 | 31 | |
4c | 163, 164, 165 | 144 | |
4d | 413 | 91 | |
4e | 610 | 258 | |
5 | 396, 355, 609, 382 | 253 | |
6 | 6a | 393, 209, 534, 226 | 60 |
6b | 353, 352, 210 | 280 | |
7 | 7a | 528, 418, 130 | 388 |
7b | 417, 419, 421, 422 | 1556 | |
8 | 8a | 375 | 43 |
8b | 234 | 6 | |
8c | 175 | 3 |
Number of Samples | Well Classified | % Well Classified | ||
---|---|---|---|---|
DA–MESO | 5101 | 61 | 1.2 | |
DA–Groups of MESO | 5101 | 1432 | 28.07 | |
ML–MESO | Validation set | 2550 | 1 | 0.04 |
Training set | 2550 | 28 | 1.1 | |
ML–Groups of MESO | Validation set | 2550 | 766 | 30 |
Training set | 2550 | 782 | 30.7 |
Gr. of MESO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total | % Well Classified |
---|---|---|---|---|---|---|---|---|---|---|
1 | 66 | 63 | 454 | 123 | 69 | 220 | 314 | 5 | 1314 | 5.02 |
2 | 41 | 131 | 138 | 87 | 39 | 24 | 98 | 4 | 562 | 23.31 |
3 | 5 | 4 | 203 | 15 | 3 | 6 | 7 | 0 | 243 | 83.54 |
4 | 2 | 1 | 30 | 406 | 4 | 9 | 70 | 2 | 524 | 77.48 |
5 | 2 | 7 | 29 | 34 | 61 | 19 | 100 | 6 | 258 | 23.64 |
6 | 8 | 4 | 75 | 56 | 7 | 103 | 59 | 1 | 313 | 32.91 |
7 | 15 | 11 | 290 | 977 | 28 | 64 | 446 | 5 | 1836 | 24.29 |
8 | 1 | 4 | 8 | 0 | 0 | 2 | 20 | 16 | 51 | 31.37 |
Total | 140 | 225 | 1227 | 1698 | 211 | 447 | 1114 | 39 | 5101 | 28.07 |
Parameter | Group 1 | Group 8 |
---|---|---|
Enterococcus | 2.0 | 17.7 |
E. coli | 1.4 | 31.2 |
EC | 672.3 | 484.2 |
HCO3 | 299.1 | 175.1 |
H+ | 10−7.60 | 10−7.59 |
Ca | 107.2 | 57.8 |
Cl | 24.5 | 29.1 |
Mg | 15.7 | 15.8 |
K | 1.6 | 1.5 |
Na | 14.4 | 17.1 |
SO4 | 79.8 | 58.2 |
Fe | 15.1 | 50.4 |
Mn | 3.3 | 29.8 |
NO3 | 7.1 | 6.6 |
As | 0.1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiouiouine, A.; Jabrane, M.; Kacimi, I.; Morarech, M.; Bouramtane, T.; Bahaj, T.; Yameogo, S.; Rezende-Filho, A.T.; Dassonville, F.; Moulin, M.; et al. Determining the Relevant Scale to Analyze the Quality of Regional Groundwater Resources While Combining Groundwater Bodies, Physicochemical and Biological Databases in Southeastern France. Water 2020, 12, 3476. https://doi.org/10.3390/w12123476
Tiouiouine A, Jabrane M, Kacimi I, Morarech M, Bouramtane T, Bahaj T, Yameogo S, Rezende-Filho AT, Dassonville F, Moulin M, et al. Determining the Relevant Scale to Analyze the Quality of Regional Groundwater Resources While Combining Groundwater Bodies, Physicochemical and Biological Databases in Southeastern France. Water. 2020; 12(12):3476. https://doi.org/10.3390/w12123476
Chicago/Turabian StyleTiouiouine, Abdessamad, Meryem Jabrane, Ilias Kacimi, Moad Morarech, Tarik Bouramtane, Tarik Bahaj, Suzanne Yameogo, Ary T. Rezende-Filho, Fabrice Dassonville, Marc Moulin, and et al. 2020. "Determining the Relevant Scale to Analyze the Quality of Regional Groundwater Resources While Combining Groundwater Bodies, Physicochemical and Biological Databases in Southeastern France" Water 12, no. 12: 3476. https://doi.org/10.3390/w12123476
APA StyleTiouiouine, A., Jabrane, M., Kacimi, I., Morarech, M., Bouramtane, T., Bahaj, T., Yameogo, S., Rezende-Filho, A. T., Dassonville, F., Moulin, M., Valles, V., & Barbiero, L. (2020). Determining the Relevant Scale to Analyze the Quality of Regional Groundwater Resources While Combining Groundwater Bodies, Physicochemical and Biological Databases in Southeastern France. Water, 12(12), 3476. https://doi.org/10.3390/w12123476