Stable Oxygen and Carbon Isotope Composition of Holocene Mytilidae from the Camarones Coast (Chubut, Argentina): Palaeoceanographic Implications
Abstract
:1. Introduction
2. Site Description
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peterson, R.G.; Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 1991, 26, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Stramma, L.; England, M. On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res. 1999, 104, 863–883. [Google Scholar] [CrossRef]
- Laprida, C.; Chapori, N.G.; Chiessi, C.M.; Violante, R.A.; Watanabe, S.; Totah, V. Middle Pleistocene sea surface temperature in the Brazil-Malvinas Confluence Zone: Paleoceanographic implications based on planktonic foraminifera. Micropaleontology 2011, 57, 183–194. [Google Scholar]
- Voigt, I.; Chiessi, M.C.; Prange, M.; Mulitza, S.; Groeneveld, J.; Varma, V.; Henrich, R. Holocene shifts of the westerlies across the South Atlantic. Paleoceanography 2015. [Google Scholar] [CrossRef] [Green Version]
- Lumpkin, R.; Garzoli, S. Interannual to decadal changes in the western South Atlantic’s surface circulation. J. Geophys. Res. 2011, 116, C01014. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, M.L.; Whatley, R.C. Late Quaternary marginal marine deposits from north-eastern Buenos Aires Province, Argentina: A review. Quat. Sci. Rev. 1995, 14, 223–254. [Google Scholar] [CrossRef]
- Aguirre, M.L. Late Pleistocene and Holocene palaeoenvironments in Golfo San Jorge, Patagonia: Molluscan evidence. Mar. Geol. 2003, 194, 3–30. [Google Scholar] [CrossRef]
- Aguirre, M.L.; Sirch, Y.N.; Richiano, S. Late Quaternary molluscan assemblages from Bahía Bustamante coastal area (Patagonia, Argentina): Palaeoecology and palaeoenvironments. J. S. Am. Earth Sci. 2005, 20, 13–32. [Google Scholar] [CrossRef]
- Aguirre, M.L.; Perez, S.; Sirch, Y.N. Morphological variability of Brachidontes swainson (Bivalvia, Mytilidae) in the marine Quaternary of Argentina (SW Atlantic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 239, 100–125. [Google Scholar] [CrossRef]
- Aguirre, M.L.; Richiano, S.; Sirch, Y.N. Palaeoenvironments and palaeoclimates of the Quaternary molluscan faunas from the coastal area of Bahía Vera- Camarones (Chubut, Patagonia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 229, 251–286. [Google Scholar] [CrossRef]
- Aguirre, M.L.; Donato, M.; Richiano, S.; Farinati, E.A. Pleistocene and Holocene interglacial molluscan assemblages from Patagonian and Bonaerensian littoral (Argentina, SW Atlantic): Palaeobiodiversity and palaeobiogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 277–292. [Google Scholar] [CrossRef]
- Schmidt, G.-A.; Bigg, G.-R.; Rohling, E.J. Global Seawater Oxygen-18 Database. 1999. Available online: http://www.giss.nasa.gov/data/o18/data/ (accessed on 6 January 2019).
- LeGrande, A.N.; Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 2006, 33, L12604. [Google Scholar] [CrossRef] [Green Version]
- Chiessi, C.M.; Ulrich, S.; Mulitza, S.; Pätzold, J.; Wefer, G. Signature of the Brazil-Malvinas Confluence (Argentine Basin) in the isotopic composition of planktonic foraminifera from surface sediments. Mar. Micropaleontol. 2007, 64, 52–66. [Google Scholar] [CrossRef]
- Panarello, H. Oxygen-18 temperatures on present and fossil invertebrate shells from Tunel Site, Beagle Channel, Argentina. Quat. S. Am. Antarct. Penins. 1987, 5, 83–92. [Google Scholar]
- Aguirre, M.L.; Leng, M.; Spiro, B. Palaeoenvironmental interpretation of the isotopic composition (C, O, and Sr) of modern and Holocene Mactra isabelleana (Bivalvia) from the NE coastal area of Buenos Aires Province, Argentina. Holocene 1998, 8, 613–621. [Google Scholar] [CrossRef]
- Aguirre, M.L.; Zanchetta, G.; Fallick, A. Stable isotope composition of Littoridina australis from the coast of Buenos Aires Province, Argentina, during Holocene climatic fluctuations. Geobios 2002, 35, 79–80. [Google Scholar] [CrossRef]
- Obelic, B.; Àlvarez, A.; Argullós, I.; Piana, E.L. Determination of water palaeotemperature in the Beagle Channel (Argentina) during the last 6000 yr through stable isotope composition of Mytilus edulis shells. Quat. S. Am. Antarct. Penins. 1998, 11, 47–71. [Google Scholar]
- Bonadonna, F.P.; Leone, G.; Zanchetta, G. Stable isotope analysis on the last 30 ka molluscan fauna from pampa grassland, Bonaerense region, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 153, 289–308. [Google Scholar] [CrossRef]
- Colonese, A.C.; Camaros, E.; Verdun, E.; Estèvez, J.; Giralt, S.; Rejas, M. Integrated archaeozoological research of shell middens: New insights into hunter-gatherer-fisher coastal exploitation in Tierra Del Fuego. J. Isl. Coast. Archaeol. 2011, 6, 235–254. [Google Scholar] [CrossRef]
- Colonese, A.C.; Verdún-Castelló, E.; Álvarez, M.; Godino, I.B.; Zurro, D.; Salvatelli, L. Oxygen isotopic composition of limpet shells from the Beagle Channel: Implications for seasonal studies in shell middens of Tierra del Fuego. J. Archaeol. Sci. 2012, 39, 1738–1748. [Google Scholar] [CrossRef]
- Boretto, G.; Consoloni, I.; Moran, G.A.; Regattieri, E.; Gordillo, S.; Fucks, E.; Zanchetta, G.; Dallai, L. Oxygen stable isotope analyses on Ameghinomya antiqua shells: A promising tool for palaeoenvironmental reconstruction along the Quaternary patagoinian Argentina coast? Alp. Mediterr. Quat. 2019, 32, 57–72. [Google Scholar]
- Aguirre, M.L.; Richiano, S.; Voelker, A.H.L.; Dettman, D.L.; Schone, B.R.; Panarello, H.O.; Donato, M.; Gomez Pera, L.; Castro, L.E.; Medina, R. Late Quaternary nearshore molluscan patterns from Patagonia: Windows to southern southwestern Atlantic-Southern Ocean. Glob. Planet. Chang. 2019, 181, 102990. [Google Scholar] [CrossRef]
- Lema, H.; Busteros, A.; Franchi, M. Hoja Geológica 4566-II y IV, Camarones (1:250.000); Programa Nacional de Cartas Geológicas de la República Argentina: Buenos Aires, Argentina, 2001; Volume 261, pp. 1–53. [Google Scholar]
- Martinez, O.A.; Coronato, A.M.J. The late Cenozoic fluvial deposits of Argentine Patagonia. Dev. Quat. Sci. 2008, 11, 205–226. [Google Scholar]
- Codignotto, J.O. Depósitos elevados y/o acrección Pleistoceno-Holoceno en la costa fueguino patagónia. In Proceedings of the Simp. Oscilaciones del Nivel del Mar el Ultima Hemiciclo Deglacial en la Argentina, Mar del Plata, Argentina, 6–7 April 1983; CIC; Universidad Nacional de Mar del Plata: Mar del Plata, Argentina, 1984; pp. 12–26. [Google Scholar]
- Codignotto, J.O.; Kokot, R.R.; Marcomini, S.C. Neotectonism and sea level changes in the coastal zone of Argentina. J. Coast. Res. 1992, 8, 125–133. [Google Scholar]
- Schellmann, G.; Radtke, U. ESR dating stratigraphically well-constrained marine terraces along the Patagonian Atlantic coast (Argentina). Quat. Int. 2000, 68/71, 261–273. [Google Scholar] [CrossRef]
- Schellmann, G.; Radtke, U. Coastal terraces and Holocene sea-level changes along the Patagonian Atlantic coast. J. Coast. Res. 2003, 19, 963–996. [Google Scholar]
- Schellmann, G.; Radtke, U. Timing and magnitude of Holocene sea-level changes along the middle and south Patagonian Atlantic coast derived from beach ridge systems, littoral terraces and valley-mouth terraces. Earth Sci. Rev. 2010, 103, 1–30. [Google Scholar] [CrossRef]
- Zanchetta, G.; Consoloni, I.; Isola, I.; Pappalardo, M.; Ribolini, A.; Aguirre, M.; Fucks, E.; Baneschi, I.; Bini, M.; Ragaini, L.; et al. New insights on the Holocene marine transgression in the Bahía Camarones (Chubut, Argentina). Ital. J. Geosci. 2012, 131, 19–31. [Google Scholar]
- Isola, I.; Bini, M.; Ribolini, A.; Pappalardo, M.; Consoloni, I.; Fucks, E.; Boretto, G.; Ragaini, L.; Zanchetta, G. Geomorphologic map of northeastern sector of San Jorge Gulf (Chubut, Argentina). J. Maps 2011, 7, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Bini, M.; Isola, I.; Zanchetta, G.; Pappalardo, M.; Ribolini, A.; Ragaini, L.; Baroni, C.; Boretto, G.; Fuck, E.; Morigi, C.; et al. Middle Holocene relative sea-level along Atlantic Patagonia: New data from Camarones (Chubut, Argentina). Holocene 2018, 28, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Coronato, M.J.; Coronato, F.; Mazzoni, E.; Vásquez, M. The physical geography of Patagonia and Tierra del Fuego. Dev. Quat. Sci. 2008, 11, 13–55. [Google Scholar]
- Isla, F.I.; Bujalesky, G.G. Coastal geology and geomorphology of Patagonia and Tierra del Fuego Archipelago. Dev. Quat. Sci. 2008, 11, 227–240. [Google Scholar]
- Tanner, W.F. Origin of beach ridges and swales. Mar. Geol. 1995, 129, 149–161. [Google Scholar] [CrossRef]
- Falabella, V.; Campagna, C.; Croxall, J. (Eds.) Atlas del Mar Patagónico. Especies y Espacios; Wildlife Conservation Society y BirdLife International: Buenos Aires, Argentina, 2009; Available online: http://www.atlas-marpatagonico.org (accessed on 15 January 2019).
- Terrasi, F.; De Cesare, N.; D’Onofrio, A.; Lubritto, C.; Marzaioli, F.; Passariello, I.; Rogalla, D.; Sabbarese, C.; Borriello, G.; Casa, G.; et al. High precision 14C AMS at CIRCE. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 2221–2224. [Google Scholar] [CrossRef]
- Terrasi, F.; Rogalla, D.; De Cesare, N.; D’Onofrio, A.; Lubritto, C.; Marzaioli, F.; Passariello, I.; Rubino, M.; Sabbarese, C.; Casa, G.; et al. A new AMS facility in Caserta/Italy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 259, 14–17. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. INTCAL13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Cordero, R.R.; Panarello, H.; Lanzelotti, S.; Favier Dubois, C.M. Radiocarbon age offsets between living organisms from the marine and continental reservoir in coastal localities of Patagonia. Radiocarbon 2003, 45, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.; Mayeda, T.K. Variations of oxygen-18 of waters from natural sources. Geochim. Cosmochima Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Seed, R.; Suchanek, T.H. Population and community ecology of Mytilus. In The Mussel Mytilus: Ecology, Physiology, Genetics and Culture; Gossling, E.M., Ed.; Elsevier: New York, NY, USA, 1992; pp. 87–170. [Google Scholar]
- Lozan, J.L.; Lampe, R.; Matthaus, W.; Rachor, E.; Rumhor, H.; Westernagen, H.V. (Eds.) Warnsignale aus der Ostsee: Wissenschaftliche Fakten; University of Hamburg, Institute of Hydrobiology: Hamburg, Germany, 1996; 385p. [Google Scholar]
- Almada-Villela, P.C.; Davenport, J.; Gruffydd, L.D. The effects of temperature on the shell growth of young Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 1982, 59, 275–288. [Google Scholar] [CrossRef]
- Zaixso, H.E. Distribución submareal del mitílido Aulacomya atra atra (Molina) en el Golfo San José (Argentina) en relación a la profundidad, características del fondo y condiciones hidrográficas. Physis 1999, 57, 1–10. [Google Scholar]
- Morriconi, E. Reproductive biology of the limpet Nacella (P.) deaurata (Gmelin, 1791) in bahía Lapataia (Beagle Channel). Sci. Mar. 1999, 63, 417–426. [Google Scholar] [CrossRef]
- Gonzáles-Wevar, C.A.; Nakano, T.; Cañete, J.I.; Poulin, E. Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic Province. Mol. Ecol. 2011, 20, 1936–1951. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.G. Skeletal Biomineralization Patterns and Evolutionary Trends; Van Nostrand Reinhold: New York, NY, USA, 1990; Volume 1, 832p. [Google Scholar]
- Tarutani, T.; Clayton, R.N.; Mayeda, T.K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 1969, 33, 987–996. [Google Scholar] [CrossRef]
- Grossman, E.L.; Ku, T.-L. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effect. Chem. Geol. 1986, 59, 59–74. [Google Scholar] [CrossRef]
- Romanek, C.S.; Grossman, E.L.; Morse, J.W. Carbon isotope fractionation in synthetic aragonite and calcite: Effects of temperature and precipitations rate. Geochim. Cosmochim. Acta 1992, 29, 1347–1353. [Google Scholar]
- Kim, S.-T.; O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effect in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Shanahan, T.M.; Pigati, J.S.; Dettman, D.L.; Quade, J. Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochim. Cosmochim. Acta 2005, 69, 3949–3966. [Google Scholar] [CrossRef]
- Craig, H. Measurement of oxygen isotope paleotemperatures. In Stable Isotopes in Oceanographic Studies and Paleotemperatures; Tongiorgi, E., Ed.; Consiglio Nazionale delle Ricerche: Spoleto, Italy, 1965; pp. 161–182. [Google Scholar]
- Wefer, G.; Berger, W.H. Isotope paleontology: Growth and composition of extant calcareous specie. Mar. Geol. 1991, 100, 207–248. [Google Scholar] [CrossRef]
- Schöne, B.R.; Oschmann, W.; Kröncke, I.; Dreyer, W.; Janssen, R.; Rumohr, H.; Houk, S.D.; Freyre Castro, A.D.; Dunca, E.; Rössler, J. North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 2003, 31, 1037–1040. [Google Scholar] [CrossRef]
- McConnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 1989, 53, 163–171. [Google Scholar] [CrossRef]
- McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K. Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochim. Cosmochim. Acta 1997, 61, 611–622. [Google Scholar] [CrossRef]
- Wanamaker, A.D.; Kreutz, K.J.; Borns, H.W.; Introne, D.S.; Feindel, S.; Funder, S.; Rawson, P.D.; Barber, B.J. Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of Mytilus edulis collected from Maine and Greenland. Paleoceanography 2007, 22, PA2217. [Google Scholar] [CrossRef]
- Daëron, M.; Drysdale, R.N.; Peral, M.; Huyghe, D.; Blamart, D.; Coplen, T.B.; Lartaud, F.; Zanchetta, G. Most Earth-surface calcites precipitate out of isotopic equilibrium. Nat. Commun. 2019, 10, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shackleton, N.J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 1987, 6, 183–190. [Google Scholar] [CrossRef]
- Shakun, J.D.; Lea, D.W.; Lisiecki, L.E.; Raymo, M.E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 2015, 426, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Lambeck, K.; Rouby, H.; Purcell, A.; Sun, Y.; Sambridge, M. Sea level and global ice volumes from the last glacial maximum to the Holocene. Proc. Natl. Acad. Sci. USA 2014, 111, 15296–15303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, B.L.; Ingle, J.C.; Conrad, M.E. Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay. California. Earth Planet. Sci. Lett. 1996, 141, 237–247. [Google Scholar] [CrossRef]
- Lécuyer, C.; Reynard, B.; Martineau, F. Stable isotope fractionation between mollusk shells and marine waters from Martinique Island. Chem. Geol. 2004, 213, 293–305. [Google Scholar] [CrossRef]
- Yan, L.; Schöne, B.R.; Arkhipkin, A. Eurhomalea exalbida (Bivalvia): A reliable recorder of climate in southern South America? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 250–252, 91–100. [Google Scholar] [CrossRef]
- McConnaughey, T.A.; Gillikin, D.P. Carbon isotopes in mollusk shell carbonates. Geo Mar. Lett. 2008, 28, 287–299. [Google Scholar] [CrossRef]
- Geist, J.; Auerswald, K.; Boom, A. Stable carbon isotopes in freshwater mussel shells: Environmental record or marker for metabolic activity? Geochim. Cosmochim. Acta 2005, 69, 3545–3554. [Google Scholar] [CrossRef]
- Baroni, C.; Zanchetta, G.; Fallick, A.E.; Longinelli, A. Molluscs stable isotope record of a core from Lake Frassino (northern Italy): Hydrological and climatic changes during the last 14 ka. Holocene 2006, 16, 827–837. [Google Scholar] [CrossRef]
- Dettman, D.L.; Reische, A.K.; Lohmann, K.C. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochim. Cosmochim. Acta 1999, 63, 1049–1057. [Google Scholar] [CrossRef]
- Mook, W.G. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1971, 9, 245–263. [Google Scholar] [CrossRef]
- Oehlerich, M.; Mayr, C.; Griesshaber, E.; Lücke, A.; Oeckler, O.M.; Ohlendorf, C.; Wolfgang, W.; Schmahl, W.W.; Zolitschka, B. Ikaite precipitation in a lacustrine environment e implications for palaeoclimatic studies using carbonates from Laguna Potrok Aike (Patagonia, Argentina). Quat. Sci. Rev. 2013, 71, 46–53. [Google Scholar] [CrossRef]
- Gillikin, D.A.; Lorrain, A.; Bouillon, S.; Willenz, P.; Dehairs, F. Stable carbon isotopic composition of Mytilus edulis shells: Relation to metabolism, salinity, δ13CDIC and phytoplankton. Org. Geochem. 2006, 37, 1371–1382. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, M.L.; Richiano, S.; Álvarez, M.F.; Eastoe, C. Malacofauna Cuaternaria del litoral norte de Santa Cruz (Patagonia, Argentina). Geobios 2009, 42, 411–434. [Google Scholar] [CrossRef]
- Kilian, R.; Lamy, F. A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55 degrees S). Quat. Sci. Rev. 2012, 53, 1–23. [Google Scholar] [CrossRef]
Sample | Field Code | 14C a BP (±2σ) | 14C cal a BP (±2σ) (Median Probability) | Species |
---|---|---|---|---|
UCI65211 | WP60B * | 390 ± 50 | - | Aulacomya atra |
UCI65210 | WP60A ** | 915 ± 20 | 477–560 (518) | Aulacomya atra |
DSH2167 | G002 ** 1 | 4070 ± 50 | 3948–4271 (4106) | Nacella (Patinigera) deaurata |
DSH2738 | AO154D | 5132 ± 67 | 5313–5608 (5493) | Mytilus edulis |
DSH2745 | WPi436 | 5562 ± 43 | 5861–6092 (5949) | Mytilus edulis |
DSH2734 | WP104B | 5675 ± 45 | 5947–6196 (6080) | Mytilus edulis |
UCI65213 | WP63B ** | 6365 ± 20 | 6750–6913 (6834) | Mytilus edulis |
DSH4026 | AO190 | 6486 ± 46 | 6867–7138 (6990) | Mytilus edulis |
Locality | δ13C‰ (V-PDB) | δ18O‰ (V-PDB) |
---|---|---|
Camarones North | ||
Aulacomya atra | ||
1.8 | 1.4 | |
1.9 | 1.0 | |
2.0 | 1.3 | |
1.4 | 1.3 | |
2.0 | 1.2 | |
1.3 | 1.4 | |
Mean | 1.7 ± 0.3 | 1.3 ± 0.2 |
Camarones South | ||
Aulacomya atra | 1.1 | 1.4 |
1.4 | 1.5 | |
1.6 | 1.3 | |
0.5 | 1.0 | |
1.9 | 1.5 | |
Mean | 1.3 ± 0.5 | 1.4 ± 0.2 |
Mytilus edulis | ||
1.4 | 0.9 | |
1.4 | 1.2 | |
Mean | 1.4 ± 0.0 | 1.0 ± 0.1 |
Bahia Bustamante | ||
Aulacomya atra | ||
1.3 | 1.3 | |
1.8 | 1.2 | |
1.8 | 1.4 | |
1.8 | 1.2 | |
Mean | 1.7 ± 0.2 | 1.3 ± 0.1 |
Mytilus edulis | ||
1.7 | 0.9 | |
1.7 | 1.0 | |
1.6 | 1.0 | |
1.5 | 0.8 | |
Mean | 1.6 ± 0.1 | 0.9 ± 0.1 |
Bahia Bustamante South | ||
Aulacomya atra | ||
1.8 | 1.3 | |
1.8 | 1.6 | |
1.4 | 1.4 | |
1.6 | 1.6 | |
1.7 | 1.6 | |
Mean | 1.7 ± 0.1 | 1.5 ± 0.2 |
Bahia Solano | ||
Aulacomya atra | ||
1.7 | 1.5 | |
1.6 | 1.1 | |
Mean | 1.7 ± 0.0 | 1.3 ± 0.2 |
Mytilus edulis | ||
1.6 | 1.7 | |
1.4 | 1.0 | |
1.7 | 1.0 | |
Mean | 1.6 ± 0.1 | 1.2 ± 0.4 |
Rada Tilly | ||
Aulacomya atra | ||
2.2 | 1.4 | |
2.2 | 1.2 | |
1.7 | 1.5 | |
2.3 | 1.5 | |
Mean | 2.1 ± 0.3 | 1.4 ± 0.1 |
Mytilus edulis | ||
1.8 | 1.2 | |
1.3 | 1.0 | |
1.3 | 1.2 | |
Mean | 1.5 ± 0.3 | 1.1 ± 0.1 |
Caleta Olivia | ||
Aulacomya atra | ||
1.5 | 1.5 | |
1.7 | 1.5 | |
1.9 | 1.7 | |
1.9 | 1.7 | |
1.5 | 1.5 | |
1.6 | 1.4 | |
Mean | 1.6 ± 0.2 | 1.6 ± 0.1 |
Species | δ13C‰ (V-PDB) | δ18O‰ (V-PDB) | Age (a BP) |
---|---|---|---|
Aulacomya atra | 2.2 | 1.4 | 915 ± 20 |
2.7 | 1.6 | ||
2.3 | 1.2 | ||
2.3 | 1.3 | ||
2.1 | 1.0 | ||
1.7 | 1.4 | ||
2.3 | 1.4 | ||
1.5 | 1.4 | ||
2.0 | 1.6 | ||
Mean | 2.1 ± 0.4 | 1.4 ± 0.2 | |
Brachidontes purpuratus | 2.5 | 1.3 | |
Aulacomya atra | 1.8 | 1.1 | 4074 ± 50 |
1.6 | 1.1 | ||
1.6 | 1.2 | ||
1.2 | 1.1 | ||
Mean | 1.6 ± 0.3 | 1.2 ± 0.02 | |
Patinigera deaurata | 1.1 | 1.4 | |
1.2 | 1.2 | ||
Mean | 1.2 ± 0.0 | 1.3 ± 0.1 | |
Mytilus edulis | 1.7 | 1.3 | 5132 ± 67 |
1.7 | 1.3 | ||
Mean | 1.7 ± 0.0 | 1.3 ± 0.15 | |
Mytilus edulis | 1.9 | 1.2 | 5562 ± 43 |
1.9 | 1.22 | ||
Mean | 1.9 ± 0.0 | 1.2 ± 0.0 | |
Mytilus edulis | 2.6 | 1.3 | 5675 ± 45 |
2.8 | 1.5 | ||
2.4 | 1.1 | ||
2.8 | 1.2 | ||
Mean | 2.6 ± 0.2 | 1.3 ± 0.2 | |
Mytilus edulis | 2.1 | 2.5 | 6350 ± 20 |
2.1 | 2.4 | ||
2.7 | 2.5 | ||
2.2 | 2.2 | ||
1.8 | 2.2 | ||
2.2 | 2.5 | ||
2.0 | 2.2 | ||
2.5 | 2.7 | ||
Mean | 2.2 ± 0.3 | 2.4 ± 0.2 | |
Mytilus edulis | 1.8 | 2.4 | 6486 ± 46 |
1.9 | 2.3 | ||
1.7 | 2.5 | ||
2.1 | 2.2 | ||
Mean | 1.9 ± 0.2 | 2.3 ± 0.2 |
Lat. | Long. | Date of Sampling | Conductibility (25 °C mS) | pH | Cl (ppm) | T (°C) | δ18O V-SMOW (‰) |
---|---|---|---|---|---|---|---|
S44°42′51″ | O065°40′31.80″ | 2/2011 | 44.44 | 8.04 | - | 18.5 | −1.07 |
S44°42′51″ | O065°40′31.80″ | 2/2010 | - | - | 18,710 | - | −0.66 |
S44°50′19.5″ | O065°43″05.1″ | 2/2011 | 48.58 | 8.10 | 18,923 | 21.5 | −0.38 |
S44°52′54.7″ | O065°40′12.0″ | 2/2011 | 45.51 | 8.04 | 18,887 | 18.5 | 0.03 |
S45°04″23.6″ | O066°26′46.8″ | 2/2011 | 42.36 | 8.02 | 19,030 | 17.5 | −0.40 |
S44°59′12.1″ | O066°11′50.9″ | 2/2011 | 43.45 | 8.03 | 18,852 | 15.6 | −0.41 |
Locality | δ18OMytilus-δ18OAulacomya (‰) | δ13CMytilus-δ13CAulacomya (‰) |
---|---|---|
Camarones South | −0.31 | 0.07 |
Bahia Bustamante | −0.38 | −0.05 |
Bahia Solano | 0.03 | 0.35 |
Rada Tilly | −0.27 | −0.65 |
Mean | −0.23 ± 0.18 | −0.07 ± 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boretto, G.; Zanchetta, G.; Consoloni, I.; Baneschi, I.; Guidi, M.; Isola, I.; Bini, M.; Ragaini, L.; Terrasi, F.; Regattieri, E.; et al. Stable Oxygen and Carbon Isotope Composition of Holocene Mytilidae from the Camarones Coast (Chubut, Argentina): Palaeoceanographic Implications. Water 2020, 12, 3464. https://doi.org/10.3390/w12123464
Boretto G, Zanchetta G, Consoloni I, Baneschi I, Guidi M, Isola I, Bini M, Ragaini L, Terrasi F, Regattieri E, et al. Stable Oxygen and Carbon Isotope Composition of Holocene Mytilidae from the Camarones Coast (Chubut, Argentina): Palaeoceanographic Implications. Water. 2020; 12(12):3464. https://doi.org/10.3390/w12123464
Chicago/Turabian StyleBoretto, Gabriella, Giovanni Zanchetta, Ilaria Consoloni, Ilaria Baneschi, Massimo Guidi, Ilaria Isola, Monica Bini, Luca Ragaini, Filippo Terrasi, Eleonora Regattieri, and et al. 2020. "Stable Oxygen and Carbon Isotope Composition of Holocene Mytilidae from the Camarones Coast (Chubut, Argentina): Palaeoceanographic Implications" Water 12, no. 12: 3464. https://doi.org/10.3390/w12123464
APA StyleBoretto, G., Zanchetta, G., Consoloni, I., Baneschi, I., Guidi, M., Isola, I., Bini, M., Ragaini, L., Terrasi, F., Regattieri, E., & Dallai, L. (2020). Stable Oxygen and Carbon Isotope Composition of Holocene Mytilidae from the Camarones Coast (Chubut, Argentina): Palaeoceanographic Implications. Water, 12(12), 3464. https://doi.org/10.3390/w12123464