Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes
Abstract
1. Introduction
2. Background on Monetary Incentive Programs
3. Methods and Econometric Models
3.1. Design of Choice Experiment
3.2. Survey Instrument
3.3. Econometric Models
4. Results
4.1. Sample Summary
4.2. Willingness-to-Pay for Landscape Attributes and Rebate Incentive
4.3. Environmental Benefits Information and Synergistic Effects
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Environmental Protection Agency (EPA). WaterSense, an EPA Partnership Program. 2016. Available online: https://www3.epa.gov/watersense.html (accessed on 14 March 2017).
- Lee, M.; Tansel, B.; Balbin, M. Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances. Water Resour. Manag. 2013, 27, 2531–2540. [Google Scholar] [CrossRef]
- Millock, K.; Nauges, C. Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy. Environ. Resour. Econ. 2010, 46, 539–565. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Brown, R.R. The Water Sensitive City: Principles for Practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef]
- Allen, C. A Quantitative Analysis of the Effect of Cash-4-Grass Programs on Water Consumption. In ProQuest Dissertations and Theses; 208; ProQuest: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Environmental Protection Agency (EPA). Reduce Your Outdoor Water Use. 2013. Available online: https://www.epa.gov/sites/production/files/2017-03/documents/ws-factsheet-outdoor-water-use-in-the-us.pdf (accessed on 14 March 2017).
- Katzev, R.D.; Johnson, T.R. Comparing the Effects of Monetary Incentives and Foot-in-the-Door Strategies in Promoting Residential Electricity Conservation. J. Appl. Soc. Psychol. 1984, 14, 12–27. [Google Scholar] [CrossRef]
- Winett, R.A.; Kaiser, S.; Haberkorn, G. The Effects of Monetary Rebates and Daily Feedback on Electricity Conservation. J. Environ. Syst. 1976, 6, 329–341. [Google Scholar] [CrossRef]
- Winkler, R.C.; Winett, R.A. Behavioral Interventions in Resource Conservation: A Systems Approach Based on Behavioral Economics. Am. Psychol. 1982, 37, 421–435. [Google Scholar] [CrossRef]
- Bennear, L.S.; Taylor, L.; Lee, J. Participation Incentives, Rebound Effects and the Cost-Effectiveness of Rebates for Water-Efficient Appliances. SSRN Electron. J. 2011. [Google Scholar] [CrossRef]
- Campbell, H.E.; Johnson, R.M.; Larson, E.H. Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation1. Rev. Policy Res. 2004, 21, 637–662. [Google Scholar] [CrossRef]
- Energy Star. Energy Star Overview. 2016. Available online: https://www.energystar.gov/about (accessed on 14 March 2017).
- Gilg, A.; Barr, S. Behavioural Attitudes towards Water Saving? Evidence from a Study of Environmental Actions. Ecol. Econ. 2006, 57, 400–414. [Google Scholar] [CrossRef]
- Clem, T.B. Extension Landscape Programs and the Values-Beliefs-Norms Theory: Studying the Impacts of Extension Programs and Beer Anticipating Environmental Behavior Change. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2017. [Google Scholar]
- Metropolitan Water District of Southern California. SoCal Water$mart|Residential Rebates, Sacramento, CA. 2017. Available online: http://socalwatersmart.com/?page_id=3007 (accessed on 14 March 2017).
- Southern Nevada Water Authority. Water Smart Landscapes Rebate. 2016. Available online: https://www.snwa.com/rebates/wsl/index.html (accessed on 14 March 2017).
- Alachua County Environmental Protection Department. Turf SWAP Program. Gainesville, FL. 2017. Available online: http://www.alachuacounty.us/Depts/epd/WaterResources/myyardourwater/TurfSWAP/Pages/default.aspx (accessed on 14 May 2017).
- Stern, P.C. Information, Incentives, and Proenvironmental Consumer Behavior. J. Consum. Policy 1999, 22, 461–478. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Customer Incentives for Water Conservation. 1994. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/40000KLY.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000014%5C40000KLY.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 14 March 2017).
- Hanak, E.; Davis, M. California Economic Policy: Lawns and Water Demand in California; Public Policy Institute of California: San Francisco, CA, USA, 2006. [Google Scholar]
- Harlan, S.L.; Yabiku, S.T.; Larsen, L.; Brazel, A.J. Household Water Consumption in an Arid City: Affluence, Affordance, and Attitudes. Soc. Nat. Resour. 2009, 22, 691–709. [Google Scholar] [CrossRef]
- Addink, S. Cash for Grass—A Cost Effective Method to Conserve Landscape Water. University of California at Riverside Turfgrass Research Facility. 2008. Available online: http://ucrturf.ucr,edu/topics/Cash-for-Grass.pdf (accessed on 14 May 2017).
- Hilaire, R.S.; Hall, S.; Cruces, L.; Arnold, M.A.; Wilkerson, D.C.; Devitt, D.A.; Hurd, B.H.; Lesikar, B.J.; Lohr, V.I.; Martin, C.A.; et al. Efficient Water Use in Residential Urban Landscapes. HortScience 2008, 43, 2081–2092. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1996, 74, 132–157. [Google Scholar] [CrossRef]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Quick Facts. 2017. Available online: https://www.census.gov/quickfacts/fact/table/FL,US/PST045217 (accessed on 14 March 2017).
- University of Florida Institute of Food and Agricultural Sciences (UF/IFAS). The Florida Yards and Neighborhoods Handbook. 2015. Available online: https://ffl.ifas.ufl.edu/materials/FYN_Handbook_2015_web.pdf (accessed on 14 May 2017).
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Khachatryan, H.; Suh, D.H.; Zhou, G.; Dukes, M. Sustainable Urban Landscaping: Consumer Preferences and Willingness to Pay for Turfgrass Fertilizers. Can. J. Agric. Econ. 2017, 65, 385–407. [Google Scholar] [CrossRef]
- Hole, A.R.; Kolstad, J.R. Mixed Logit Estimation of Willingness to Pay Distributions: A Comparison of Models in Preference and WTP Space Using Data from a Health-Related Choice Experiment. Empir. Econ. 2012, 42, 445–469. [Google Scholar] [CrossRef]
- Train, K.E.; Weeks, M. Discrete Choice Models in Preference Space and Willingness-to-Pay Space. Appl. Simul. Methods Environ. Resour. Econ. 2005, 3, 1–16. [Google Scholar] [CrossRef]
- Scarpa, R.; Thiene, M.; Train, K. Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps. Am. J. Agric. Econ. 2008, 90, 994–1010. [Google Scholar] [CrossRef]
- Xie, J.; Gao, Z.; Swisher, M.; Zhao, X. Consumers’ Preferences for Fresh Broccolis: Interactive Effects between Country of Origin and Organic Labels. Agric. Econ. 2016, 47, 181–191. [Google Scholar] [CrossRef]
- Peterson, M.N.; Thurmond, B.; Mchale, M.; Rodriguez, S.; Bondell, H.D.; Cook, M. Predicting Native Plant Landscaping Preferences in Urban Areas. Sustain. Cities Soc. 2012, 5, 70–76. [Google Scholar] [CrossRef]
- Swait, J.; Louviere, J.J. The Role of the Scale Parameter in the Estimation and Comparison of Multinomial Logit Models. J. Mark. Res. 1993, 30, 305. [Google Scholar] [CrossRef]
- Robbins, P.; Birkenholtz, T. Turfgrass Revolution: Measuring the Expansion of the American Lawn. Land Use Policy 2003, 20, 181–194. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Historical Water-Use in Florida. United States Geological Survey. 15 September 2016. Available online: http://fl.water.usgs.gov/infodata/wateruse/historical.html (accessed on 14 May 2017).
- Khachatryan, H.; Suh, D.H.; Xu, W.; Useche, P.; Dukes, M. Towards Sustainable Water Management: Consumer Preferences and Willingness to Pay for Smart Irrigation Technologies. Land Use Policy 2019, 85, 33–41. [Google Scholar] [CrossRef]
- Suh, D.H.; Khachatryan, H.; Rihn, A.; Dukes, M. Relating Knowledge and Perceptions of Sustainable Water Management to Preferences for Smart Irrigation Technology. Sustainability 2017, 9, 607. [Google Scholar] [CrossRef]
- National Gardening Association. The National Gardening Association’s Comprehensive Study of Consumer Gardening Practices, Trends, and Product Sales; National Gardening Association Inc.: Williston, VT, USA, 2013. [Google Scholar]
Attributes | Levels | Variable |
---|---|---|
Cost of installation ($) | $4500, $5000, $5500, $6000 | Cost |
Landscape design ratio | 75% turfgrass/25% plant (base) 50% turfgrass/50% plant 25% turfgrass/75% plant 100% plant | Plant25 Plant50 Plant75 Plant100 |
Rebate levels Pollinator attractive habitat | 0% (base) 25% 50% High Low (base) | Rebate0 Rebate25 Rebate50 Habitat |
Irrigation system | Smart Conventional (base) | Irrigation |
Maintenance requirement | Low Medium High (base) | Maintlow Maintmed Mainthigh |
Whole Sample | Control Group | Treatment Group | U.S. Census Group b | |
---|---|---|---|---|
Observations | 610 | 305 | 305 | - |
Age | 49.2 | 49.3 | 49.0 | 41.1 a |
Female (%) | 59.0 | 60.3 | 57.7 | 51.1 |
Ethnic Group (%) | ||||
Caucasian | 81.6 | 82.6 | 80.7 | 54.9 |
African American | 7.5 | 6.6 | 8.2 | 16.8 |
Hispanic | 5.6 | 5.9 | 5.3 | 24.9 |
Others | 5.4 | 4.9 | 4.6 | 3.4 |
Education (%) | ||||
High school | 12.0 | 10.1 | 13.8 | 30.0 |
College degree (2 years above) | 68.5 | 70.2 | 66.9 | 45.0 |
Graduate degree | 19.5 | 19.7 | 19.3 | 8.0 |
Employment (%) | ||||
Employed full time | 46.6 | 46.9 | 46.2 | 53.6 |
Employed part time | 8.2 | 7.9 | 8.5 | - |
Self-employed | 7.9 | 6.9 | 8.8 | - |
Unemployed | 7.9 | 8.9 | 6.9 | 4.9 |
Student | 1.2 | 1.0 | 1.3 | - |
Retired | 25.7 | 25.9 | 25.6 | 19.7 |
Income (%) | ||||
Less than $19,999 | 3.8 | 4.9 | 2.6 | 18.8 |
$20,000–$59,999 | 36.9 | 37.1 | 36.7 | 39.4 |
$60,000–$99,999 | 33.3 | 30.1 | 36.4 | 22.3 |
$100,000 above | 26.1 | 27.9 | 24.2 | 19.6 |
Control Group | Treatment Group | WTP Difference (Treatment-Control) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Attributes | Overall Control Group N = 305 (1) | Low Incentive Requirement N = 80 (2) | Medium Incentive Requirement N = 128 (3) | High Incentive Requirement N = 97 (4) | Overall Treatment Group N = 305 (5) | Low Incentive Requirement N = 68 (6) | Medium Incentive Requirement N = 122 (7) | High Incentive Requirement N = 115 (8) | ΔWTP (Overall) | ΔWTP (Low Incentive Requirement) | ΔWTP (Medium Incentive Requirement) | ΔWTP (High Incentive Requirement) |
Mean Estimates | ||||||||||||
Plant50 | 0.694 *** | 0.547 | 0.627 * | 0.499 | 0.382 * | 1.369 | 0.088 | 0.357 | −0.312 *** | 0.822 *** | −0.539*** | −0.142 |
(0.252) | (0.465) | (0.343) | (0.329) | (0.200) | (0.974) | (0.223) | (0.317) | [0.01] | [0.008] | [0.001] | [0.395] | |
Plant75 | 0.103 | −0.126 | 0.122 | 0.230 | 0.234 | 0.878 | 0.098 | 0.142 | 0.131 | 1.004 | −0.024 | −0.088 |
(0.246) | (0.583) | (0.310) | (0.366) | (0.225) | (0.797) | (0.241) | (0.354) | [0.23] | [0.200] | [0.870] | [0.766] | |
Plant100 | −1.510 *** | −2.512 *** | −2.162 ** | −0.311 | −1.588 *** | −1.313 | −1.026 ** | −2.274 ** | −0.078 | 1.199 | 1.136 ** | −1.963 *** |
(0.560) | (0.898) | (0.921) | (0.692) | (0.540) | (2.119) | (0.448) | (0.947) | [0.43] | [0.362] | [0.039] | [0.008] | |
Habitat | 0.729 *** | 1.818 *** | 0.745 ** | 0.916 ** | 1.114 *** | 1.594 ** | 1.127 *** | 0.771 ** | 0.385 *** | −0.224 ** | 0.382 *** | −0.145 |
(0.209) | (0.569) | (0.300) | (0.365) | (0.226) | (0.726) | (0.272) | (0.346) | [0.00] | [0.010] | [0.001] | [0.374] | |
Irrigation | 0.401 ** | 0.666** | 0.399 | 0.625 ** | 0.951 *** | 1.331 ** | 0.975 *** | 0.557 ** | 0.550 *** | 1.996 ** | 0.576 *** | −0.068 |
(0.169) | (0.323) | (0.262) | (0.295) | (0.189) | (0.642) | (0.234) | (0.274) | [0.00] | [0.022] | [0.000] | [0.471] | |
Mainlow | 1.982 *** | 1.504 ** | 1.913 *** | 1.926 *** | 1.841 *** | 2.662 * | 1.377 *** | 1.799 *** | −0.141 * | 1.158 *** | −0.536 *** | −0.127 * |
(0.456) | (0.767) | (0.669) | (0.697) | (0.422) | (1.610) | (0.431) | (0.684) | [0.05] | [0.000] | [0.002] | [0.054] | |
Mainmed | 1.198 *** | 1.346 ** | 0.953 ** | 1.314 *** | 1.295 *** | 1.654 | 1.003 *** | 1.256 ** | 0.097 *** | 0.308 *** | 0.050 *** | −0.058 |
(0.304) | (0.582) | (0.391) | (0.484) | (0.307) | (1.023) | (0.313) | (0.500) | [0.00] | [0.000] | [0.000] | [0.387] | |
Rebate25 | 0.598 *** | 0.929 ** | 0.752 *** | 0.716 ** | 0.816 *** | 1.251 * | 0.638 *** | 0.802 ** | 0.218 *** | 0.322 *** | −0.114 *** | 0.086 ** |
(0.171) | (0.407) | (0.284) | (0.295) | (0.190) | (0.697) | (0.203) | (0.313) | [0.00] | [0.001] | [0.003] | [0.040] | |
Rebate50 | 0.959 *** | 1.253 ** | 1.075 *** | 0.999 *** | 0.885 *** | 0.628 | 0.676 *** | 0.968 ** | −0.074 ** | −0.625 *** | −0.399 *** | −0.031 |
(0.254) | (0.600) | (0.400) | (0.368) | (0.238) | (0.791) | (0.258) | (0.408) | [0.04] | [0.000] | [0.000] | [0.560] | |
Scale(λ) | −0.560 *** | −0.611 | −0.667 ** | −0.608 ** | −0.574 *** | −0.708 | −0.407** | −0.649 ** | ||||
(0.180) | (0.377) | (0.260) | (0.288) | (0.171) | (0.465) | (0.198) | (0.276) | |||||
Optout | −8.224 *** | −12.58 *** | −8.22 *** | −5.49 *** | −7.334 *** | −7.595 *** | −6.196 *** | −7.923 *** | ||||
(0.853) | (0.377) | (1.135) | (0.736) | (0.682) | (1.607) | (0.609) | (1.088) | |||||
Standard Deviation | ||||||||||||
Plant50 | 1.637 *** | 2.132 *** | 1.309 *** | 1.145 ** | 1.447 *** | 1.251 * | 0.638 *** | 0.802 ** | ||||
(0.363) | (0.693) | (0.475) | (0.449) | (0.351) | (0.697) | (0.203) | (0.313) | |||||
Plant75 | 2.213 *** | 2.675 *** | 1.301 * | 2.162 *** | 2.082 *** | 4.334 * | 1.007 *** | 2.122 *** | ||||
(0.470) | (1.013) | (0.666) | (0.774) | (0.456) | (2.286) | (0.351) | (0.737) | |||||
Plant100 | 6.293 *** | 5.703 *** | 5.572 *** | 4.526 *** | 5.313 *** | 9.973 | 2.382 *** | 5.829 *** | ||||
(1.379) | (1.725) | (1.799) | (1.430) | (1.169) | (6.371) | (0.892) | (1.998) | |||||
Habitat | 1.175 *** | 0.475 | 0.809 | 0.676 | 1.097 *** | 0.567 | 0.960 ** | 1.479 *** | ||||
(0.312) | (0.343) | (0.631) | (0.435) | (0.319) | (0.608) | (0.406) | (0.535) | |||||
Irrigation | 0.629 | 1.083 ** | 0.471 | 0.846 ** | 0.572 | 2.296 * | 0.494 | 0.506 | ||||
(0.445) | (0.463) | (0.454) | (0.396) | (0.377) | (1.338) | (0.346) | (0.551) | |||||
Mainlow | 1.275 *** | 0.746 * | 1.544 ** | 0.693 * | 0.844 | 1.719 | 1.141 * | 0.106 | ||||
(0.456) | (0.404) | (0.769) | (0.380) | (0.552) | (1.087) | (0.621) | (1.021) | |||||
Mainmed | 0.104 | 0.199 | 0.193 | 0.208 | 0.034 | 0.095 | 0.124 | 0.630 | ||||
(0.193) | (0.257) | (0.306) | (0.283) | (0.237) | (0.443) | (0.334) | (0.404) | |||||
Scale(λ) | 0.579 *** | 1.316 *** | 0.047 | 0.666*** | 0.499 *** | 0.413 | 0.197 | 0.227 | ||||
(0.200) | (0.457) | (0.176) | (0.185) | (0.154) | (0.312) | (0.178) | (0.156) | |||||
Optout | 5.727 *** | 9.558 *** | 5.007 *** | 7.044 *** | 4.416 *** | 6.002 ** | 3.428 *** | 3.474 *** | ||||
(1.160) | (3.339) | (1.423) | (2.076) | (0.826) | (2.789) | (0.771) | (1.071) | |||||
# of Obs. | 7320 | 1920 | 3072 | 2328 | 7320 | 1632 | 2928 | 2760 | ||||
Log-likeli-hood | −2018.827 | −511.538 | −849.856 | −652.946 | −2032.899 | −417.212 | −829.783 | −765.423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Khachatryan, H. Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes. Water 2020, 12, 3023. https://doi.org/10.3390/w12113023
Zhang X, Khachatryan H. Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes. Water. 2020; 12(11):3023. https://doi.org/10.3390/w12113023
Chicago/Turabian StyleZhang, Xumin, and Hayk Khachatryan. 2020. "Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes" Water 12, no. 11: 3023. https://doi.org/10.3390/w12113023
APA StyleZhang, X., & Khachatryan, H. (2020). Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes. Water, 12(11), 3023. https://doi.org/10.3390/w12113023