Next Article in Journal
Temperature Stability and Effectiveness of Plasma-Activated Liquids over an 18 Months Period
Previous Article in Journal
Mathematical Modeling of a Domestic Wastewater Treatment System Combining a Septic Tank, an Up Flow Anaerobic Filter, and a Constructed Wetland
Open AccessArticle

Groundwater Quality Assessment of a Multi-Layered Aquifer in a Desert Environment: A Case Study in Wadi ad-Dawasir, Saudi Arabia

1
Remote Sensing Laboratory, Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
2
Geography Department, Faculty of Arts, King Saud University, Riyadh 11451, Saudi Arabia
*
Author to whom correspondence should be addressed.
Water 2020, 12(11), 3020; https://doi.org/10.3390/w12113020
Received: 14 September 2020 / Revised: 12 October 2020 / Accepted: 22 October 2020 / Published: 28 October 2020
(This article belongs to the Section Hydrology and Hydrogeology)
Sustainable management of groundwater in desert environments dictates better knowledge of the quality status and the controlling processes. To this end, an integrated analysis of hydrochemical and statistical assessment was carried out for 692 groundwater samples collected from the multi-layered aquifer system in Wadi ad-Dawasir area (Saudi Arabia). The four water-bearing formations arranged upwards, namely Lower Wajid, Upper Wajid, Khuff-Kumdah, and Quaternary, were investigated. The prime objective was to delineate the baseline conditions and the dominant process controlling the groundwater evolution that can help make resource management better. We used fifteen indicators, namely the total dissolved solid (TDS), total hardness, Eh, pH, temperature °C, turbidity, Fe2+, dissolved oxygen (DO), NH4, HCO3, NO3, F, NO2, PO42−, and SiO2. Descriptive statistics, violation of the international standards, geostatistical modeling, and factorial analyses (FA) were performed. Geologic, soil, topographic, and climatic factors controlling the quality were investigated. The Quaternary aquifer was the most polluted by TDS, total hardness, NO3, SiO2, Fe2+, F, and HCO3. Khuff-Kumdah showed largest means of DO and NH4. Upper Wajid was the largest in NO2. Lower Wajid proved largest in PO42−. Violation of the international standards clarified largest emergence of the pH for the Lower Wajid; Fe2+ and NO3 for the Upper Wajid; and total hardness, TDS, Fluoride, turbidity, and NH4 for the Quaternary aquifer. Rock interaction and evaporation are the dominant processes that contributed largely to the hydrochemical evolution of the groundwater. FA distinguished six main factors that explained for over 60.8% of the total groundwater quality variation lead byF1 (44.23%) that clarified strong positive loads of TDS (0.98), total hardness (0.95), nitrate NO3 (0.84), turbidity (0.78), NH4 (0.67), moderately loaded by fluoride (0.47), and Fe2+ (0.31). View Full-Text
Keywords: groundwater quality indicators; geostatistical modeling; factor analysis; Wajid aquifer; Wadi ad-Dawasir; Saudi Arabia groundwater quality indicators; geostatistical modeling; factor analysis; Wajid aquifer; Wadi ad-Dawasir; Saudi Arabia
Show Figures

Figure 1

MDPI and ACS Style

Masoud, A.A.; Aldosari, A.A. Groundwater Quality Assessment of a Multi-Layered Aquifer in a Desert Environment: A Case Study in Wadi ad-Dawasir, Saudi Arabia. Water 2020, 12, 3020. https://doi.org/10.3390/w12113020

AMA Style

Masoud AA, Aldosari AA. Groundwater Quality Assessment of a Multi-Layered Aquifer in a Desert Environment: A Case Study in Wadi ad-Dawasir, Saudi Arabia. Water. 2020; 12(11):3020. https://doi.org/10.3390/w12113020

Chicago/Turabian Style

Masoud, Alaa A.; Aldosari, Ali A. 2020. "Groundwater Quality Assessment of a Multi-Layered Aquifer in a Desert Environment: A Case Study in Wadi ad-Dawasir, Saudi Arabia" Water 12, no. 11: 3020. https://doi.org/10.3390/w12113020

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop