Burning Water, Overview of the Contribution of Arjen Hoekstra to the Water Energy Nexus
Abstract
:1. Introduction
2. Water and Energy Relationships
3. Water and Energy Studies before 2009
4. Contribution of Water Footprint Analyses to the Scientific Community
4.1. Introduction Water Footprint Concept
4.2. Water Footprint of Energy Studies
4.2.1. WFs of Biofuels from Sugar, Starch and Oil Crops
4.2.2. WFs of Cellulosic Feed Stocks
4.2.3. Water Footprints of Biofuels from Algae
4.2.4. Water Footprints of Electricity
4.2.5. Water Footprints of Hydropower
4.3. Applications of Quantitative Data for Energy Consumption Analysis
4.3.1. Water Footprints of Transport
4.3.2. Consequences of IEA Energy Scenarios for Water
5. The Way Forward
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Energy Type | Green Water Footprint (m3/GJ) | Blue Water Footprint (m3/GJ) | Grey Water Footprint (m3/GJ) | ||
---|---|---|---|---|---|
WFs of biofuels from sugar, starch and oil crops a | |||||
Ethanol | Sugar cane | Global average | 60 | 25 | 6 |
Peru | 21 | 26 | 5 | ||
Cuba | 154 | 22 | 1 | ||
Pakistan | 38 | 99 | 12 | ||
Sugar beet | Global average | 31 | 10 | 10 | |
Belgium | 19 | 0 | 5 | ||
Iran | 21 | 133 | 17 | ||
China | 57 | 0 | 32 | ||
Maize | Global average | 94 | 8 | 19 | |
Germany | 44 | 0 | 12 | ||
Egypt | 14 | 107 | 48 | ||
India | 218 | 6 | 16 | ||
Biodiesel | Rapeseed | Global average | 145 | 20 | 29 |
Canada | 232 | 0 | 30 | ||
China | 118 | 0 | 42 | ||
India | 141 | 129 | 20 | ||
France | 100 | 0 | 16 | ||
Germany | 86 | 0 | 21 | ||
WFs of cellulosic feed stocks | |||||
Heat | Wood | Global coniferous b | 46 | 0.6 | |
Global non coniferous b | 21 | 0.3 | |||
United Kingdom c | 122 | 0 | 0 | ||
Denmark c | 62 | 6 | |||
India, Himachal Pradesh d | 11 | 63 | |||
India, Madhya Pradesh d | 445 | 604 | |||
Ethanol e | Sugar beet pulp | 4 | 1 | 1 | |
Cassava stalks | 23 | 0 | 0.5 | ||
Sugar cane bagasse | 12 | 5 | 1 | ||
Cotton stalks | 35 | 20 | 7 | ||
Miscanthus | 85 | 0 | - | ||
Pyrolysis oil e | Sugar beet pulp | 5 | 2 | 2 | |
Cassava stalks | 7 | 0 | 0 | ||
Sugar cane bagasse | 5 | 2 | 0.5 | ||
Cotton stalks | 7 | 4 | 1 | ||
Miscanthus | 63 | 0 | 0 | ||
WFs of biofuels from algae | |||||
Biodiesel f | Netherlands | 0 | 4 | 0 | |
Hawaii, U.S. | 0 | 52 | 0 | ||
Electricity | Coal g | 0.08–2.1 | |||
Lignite g | 0.09–1.6 | ||||
Traditional oil g | 0.2–1.2 | ||||
Unconventional oil g | 0.2–1.3 | ||||
Natural gas g | 0.08–1.2 | ||||
Shale gas g | 0.08–1.3 | ||||
Nuclear g | 0.02–1.5 | ||||
Concentrated solar power g | 0.1–2.2 | ||||
Photovoltaic g | 0.006–0.3 | ||||
Wind g | 0.002–0.012 | ||||
Geothermal g | 0.007–0.8 | ||||
Pv g | 0.32 | ||||
Wind g | 0.08 | ||||
Hydropower | Global average g | 0.3–850 | |||
Flooded lake Ecuador h | 0.019–13.085 | ||||
Flooded river Ecuador h | 0.28 | ||||
Run-of-river Ecuador without reservoir h | 0.08 | ||||
Run-of-river Ecuador with reservoir h | 0.21 |
References
- Hoekstra, A.Y. The Water Footprint of Modern Consumer Society; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Williams, E.D.; Simmons, J.E. Water in the Energy Industry. An Introduction. British Petroleum (BP). Available online: https://www.bp.com/energysustainabilitychallenge (accessed on 15 July 2020).
- Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Bosman, R. The blue and grey water footprint of construction materials: Steel, cement and glass. Water Resour. Ind. 2018, 19, 1–12. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W.; Hoekstra, A.Y. The consumptive water footprint of electricity and heat: A global assessment. Environ. Sci. Water Res. Technol. 2015, 1, 285–297. [Google Scholar] [CrossRef]
- Vaca-Jiménez, S.; Gerbens-Leenes, P.W.; Nonhebel, S. The water footprint of electricity in Ecuador: Technology and fuel variation indicate pathways towards water-efficient electricity mixes. Water Resour. Ind. 2019, 22, 100112. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; Van der Meer, T.H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products, Value of Water Res. Report Series No. 47; UNESCO-IHE: Delft, The Netherlands, 2010; Available online: http://www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf (accessed on 12 October 2020).
- International Energy Agency (IEA). World Energy Outlook 2019; IEA: Paris, France, 2019; ISBN 978-92-64-18134-2. [Google Scholar]
- Gleick, P.H. Water and energy. Annu. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, W.; Hoekstra, A.Y. The water footprint of sweeteners and bio-ethanol. Environ. Int. 2012, 40, 202–211. [Google Scholar] [CrossRef]
- Mathioudakis, V.; Gerbens-Leenes, P.W.; van der Meer, T.H.; Hoekstra, A.Y. The Water Footprint of second generation bioenergy: A comparison of biomass feedstocks and conversion techniques. J. Clean. Prod. 2017, 148, 571–582. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Xu, L.; De Vries, G.J.; Hoekstra, A.Y. The blue water footprint and land use of biofuels from algae. Water Resour. Res. 2014, 50, 8549–8563. [Google Scholar] [CrossRef]
- Schyns, J.F.; Booij, M.J.; Hoekstra, A.Y. The water footprint of wood for lumber, pulp, paper, fuel and firewood. Adv. Water Resour. 2017, 107, 490–501. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, D.; Gerbens-Leenes, P.W.; Guan, D. China’s rising hydropower demand challenges water sector. Sci. Rep. 2015, 5, 11446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleick, P.H. Environmental consequences of hydroelectric development: The role of facility size and type. Energy 1992, 17, 735–747. [Google Scholar] [CrossRef]
- Gleick, P.H. Water in Crisis: A Guide to the World’s Fresh Water Resource; Oxford University Press: New York, NY, USA, 1993; ISBN 9780195076271. [Google Scholar]
- Inhaber, H. Water Use in Renewable and Conventional Electricity Production. Energy Sources 2004, 26, 309–322. [Google Scholar] [CrossRef]
- DOE. Energy Demands on Water Resources: Report to Congress on the Interdependency of Energy and Water; DOE: Washington, DC, USA, 2006. [Google Scholar]
- Sovacool, B.K.; Sovacool, K.E. Identifying future electricity–water tradeoffs in the United States. Energy Policy 2009, 37, 2763–2773. [Google Scholar]
- Rio Carrillo, A.M.; Frei, C. Water: A key resource in energy production. Energy Policy 2009, 37, 4303–4312. [Google Scholar] [CrossRef]
- Wu, M.; Mintz, M.; Wang, M.; Arora, S. Water consumption in the production of ethanol and petroleum gasoline. Environ. Manag. 2009, 44, 981–997. [Google Scholar]
- Vassolo, S.; Döll, P. Global-scale gridded estimates of thermoelectric power and manufacturing water use. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; Value of Water Research Report Series No.11; UNESCO-IHE: Delft, The Netherlands, 2002. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations; Value of Water Research Report Series No. 16; UNESCO-IHE: Delft, The Netherlands, 2004. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802. [Google Scholar] [CrossRef]
- Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J. Life cycle water use for electricity generation: A review and harmonization of literature estimates. Environ. Res. Lett. 2013, 8, 015031. [Google Scholar] [CrossRef]
- Spang, E.S.; Moomaw, W.R.; Gallagher, K.S.; Kirshen, P.H.; Marks, D.H. The water consumption of energy production: An international comparison. Environ. Res. Lett. 2014, 9, 105002. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Personal Website. 2020. Available online: http://www.ayhoekstra.nl/ (accessed on 15 July 2020).
- Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T. The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol. Econ. 2009, 68, 1052–1060. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Gerbens-Leenes, W.; Van der Meer, T.H. The water footprint of Jatropha curcas under poor growing conditions. Proc. Natl. Acad. Sci. USA 2009, 106, E119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission, 2020. Biofuels. Available online: https://ec.europa.eu/energy/topics/renewable-energy/biofuels/overview_en (accessed on 16 June 2020).
- Holmatov, B.; Hoekstra, A.Y.; Krol, M.S. Land, water and carbon footprints of circular bioenergy production systems. Renew. Sustain. Energy Rev. 2019, 111, 224–235. [Google Scholar] [CrossRef]
- Fischer, G.; Hizsnyik, E.; Prieler, S.; Shah, M.; Van Velthuizen, H. Biofuels and Food Security; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2009. [Google Scholar]
- Schyns, J.F.; Vanham, D. The Water Footprint of Wood for Energy Consumed in the European Union. Water 2019, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Gerbens-Leenes, P.W.; Nonhebel, S. The water footprint of food and cooking fuel in a developing country, The case study of self sufficient rural India. J. Clean. Prod. 2020. under review. [Google Scholar]
- Menetrez, M.Y. An overview of algae biofuel production potential and environmental impact. Environ. Sci. Technol. 2012, 46, 7073–7085. [Google Scholar]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol. 2011, 102, 10–16. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Bakken, T.H.; Killingtveit, Å.; Engeland, K.; Alfredsen, K.; Harby, A. Water consumption from hydropower plants—Review of published estimates and an assessment of the concept. Hydrol. Earth Syst. Sci. 2013, 17, 3983–4000. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, W.; Hoekstra, A.Y. The water footprint of biofuel-based transport. Energy Environ. Sci. 2011, 4, 2658–2668. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Holtz, K. Consequences of transport low-carbon transitions and the carbon, land and water footprints of different fuel options in The Netherlands. Water 2020, 12, 1968. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2012; IEA: Paris, France, 2012; ISBN 978-92-64-97300-8. Available online: https://www.iea.org/reports/world-energy-outlook-2012 (accessed on 12 October 2020).
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. Future electricity: The challenge of reducing both carbon and water footprint. Sci. Total Environ. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P.; et al. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Vaca-Jiménez, S.; Gerbens-Leenes, P.W.; Nonhebel, S. The monthly dynamics of blue water footprints and electricity generation of four types of hydropower plants in Ecuador. Sci. Total Environ. 2020, 713, 136579. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Liu, J. A new approach to assessing the water footprint of hydroelectric power based on allocation of water footprints among reservoir ecosystem services. Phys. Chem. Earth Parts A/B/C 2015, 79–82, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Hogeboom, R.J.; Knook, L.; Hoekstra, A.Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 2018, 113, 285–294. [Google Scholar] [CrossRef]
- Wöhler, L.; Niebaum, G.; Krol, M.; Hoekstra, A.Y. The grey water footprint of human and veterinary pharmaceuticals. Water Res. X 2020, 7, 100044. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerbens-Leenes, W.; Vaca-Jiménez, S.; Mekonnen, M. Burning Water, Overview of the Contribution of Arjen Hoekstra to the Water Energy Nexus. Water 2020, 12, 2844. https://doi.org/10.3390/w12102844
Gerbens-Leenes W, Vaca-Jiménez S, Mekonnen M. Burning Water, Overview of the Contribution of Arjen Hoekstra to the Water Energy Nexus. Water. 2020; 12(10):2844. https://doi.org/10.3390/w12102844
Chicago/Turabian StyleGerbens-Leenes, Winnie, Santiago Vaca-Jiménez, and Mesfin Mekonnen. 2020. "Burning Water, Overview of the Contribution of Arjen Hoekstra to the Water Energy Nexus" Water 12, no. 10: 2844. https://doi.org/10.3390/w12102844
APA StyleGerbens-Leenes, W., Vaca-Jiménez, S., & Mekonnen, M. (2020). Burning Water, Overview of the Contribution of Arjen Hoekstra to the Water Energy Nexus. Water, 12(10), 2844. https://doi.org/10.3390/w12102844