Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greywater Selection and Characteristics
2.2. Greywater Collection and Storage
2.3. Materials
2.4. Analytical Methods
2.5. TiO2 Immobilization
2.6. Stirred Tank Reactor
2.7. Experiments Operating Conditions
2.8. Calculations
3. Results and Discussion
3.1. Control Experiments
3.2. TiO2 Photocatalysis
3.3. O3/dark, O3/TiO2/dark, O3/UVA and O3/TiO2/UVA
3.3.1. Ozonation and Catalytic Ozonation
3.3.2. Ozone Photolysis and Photocatalytic Ozonation
3.4. H2O2/dark and H2O2/UVA
3.5. H2O2 Combined with TiO2 in the Dark, under Visible and UVA Irradiation
3.5.1. H2O2/TiO2 under Dark Conditions
3.5.2. H2O2/TiO2 under Visible Irradiation
3.5.3. H2O2/TiO2 under UVA Irradiation
3.6. Peroxonation (H2O2/O3) and Catalytic Peroxonation (H2O2/O3/TiO2) under Dark and UVA Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maimon, A.; Gross, A. Greywater: Limitations and perspective. Curr. Opin. Environ. Sci. Health 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Wang, W.L.; Wu, Q.Y.; Huang, N.; Xu, Z.B.; Lee, M.Y.; Hu, H.Y. Potential risks from UV/H2O2oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products. Water Res. 2018, 141, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Schoen, M.E.; Garland, J. Review of pathogen treatment reductions for onsite non-potable reuse of alternative source waters. Microb. Risk Anal. 2017, 5, 25–31. [Google Scholar] [CrossRef]
- Li, Z.; Boyle, F.; Reynolds, A. Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 2010, 260, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, G.; Wu, J.; Ghanbari, F. Enhanced treatment of greywater using electrocoagulation/ozonation: Investigation of process parameters. Process Saf. Environ. Prot. 2019, 121, 125–132. [Google Scholar] [CrossRef]
- Assayed, A.; Chenoweth, J.; Pedley, S. Drawer compacted sand filter: A new and innovative method for on-site grey water treatment. Environ. Technol. 2014, 35, 2435–2446. [Google Scholar] [CrossRef] [Green Version]
- Ghunmi, L.A.; Zeeman, G.; Lier, J.V.; Fayyed, M. Quantitative and qualitative characteristics of grey water for reuse requirements and treatment alternatives: The case of Jordan. Water Sci. Technol. 2008, 58, 1385–1396. [Google Scholar] [CrossRef]
- WWAP. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247153 (accessed on 15 February 2019).
- Halalsheh, M.; Dalahmeh, S.; Sayed, M.; Suleiman, W.; Shareef, M.; Mansour, M.; Safi, M. Grey water characteristics and treatment options for rural areas in Jordan. Bioresour. Technol. 2008, 99, 6635–6641. [Google Scholar] [CrossRef]
- Dalahmeh, S.S.; Assayed, M.; Suleiman, W.T. Themes of stakeholder participation in greywater management in rural communities in Jordan. Desalination 2009, 243, 159–169. [Google Scholar] [CrossRef] [Green Version]
- JSMO. Water—Reclaimed Grey Water JS1776:2013, 2nd ed.; Jordan Standards and Metrology Organization: Amman, Jordan, 2013; pp. 1–16. [Google Scholar]
- Alrousan, D.M.; Dunlop, P.S.; McMurray, T.A.; Byrne, J.A. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res. 2009, 43, 47–54. [Google Scholar] [CrossRef]
- Gassie, L.W.; Englehardt, J.D. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review. Water Res. 2017, 125, 384–399. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hubner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Gulyas, H.; Jorge, C.F.L.; Reich, M.; Otterpohl, R. Reclaiming Biologically Pretreated Greywater for Reuse by Photocatalytic Oxidation: Qualitative Study on the Removal of Trace Organics. J. Water Resour. Prot. 2013, 5, 568–584. [Google Scholar] [CrossRef]
- Hassanshahi, N.; Karimi-Jashni, A. Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water. Ecotoxicol. Environ. Saf. 2018, 161, 683–690. [Google Scholar] [CrossRef]
- Birben, N.; Uyguner-Demirel, C.; Bekbolet, M. Photocatalytic Removal of Microbiological Consortium and Organic Matter in Greywater. Catalysts 2016, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Agustina, T.E.; Ang, H.M.; Vareek, V.K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. A Chem. Rev. 2005, 6, 264–273. [Google Scholar] [CrossRef]
- McMurray, T.A.; Dunlop, P.S.M.; Byrne, J.A. The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J. Photochem. Photobiol. A Chem. 2006, 182, 43–51. [Google Scholar] [CrossRef]
- Gumus, D.; Akbal, F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere 2017, 174, 218–231. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Mechanisms of catalytic ozonation: An investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water. Appl. Catal. B Environ. 2013, 129, 437–449. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Juang, R.S. Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. J. Environ. Manag. 2015, 147, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.D.; Taxt-Lamolle, S.F.M.; Hole, E.O.; Krivokapić, A.; Sagstuen, E.; Haugen, H.J. TiO2 suspension exposed to H2O2 in ambient light or darkness: Degradation of methylene blue and EPR evidence for radical oxygen species. Appl. Catal. B Environ. 2013, 142, 662–667. [Google Scholar] [CrossRef]
- Janson, O.; Unosson, E.; Stromme, M.; Engqvist, H.; Welch, K. Organic degradation potential of a TiO2/H2O2/UV-vis system for dental applications. J. Dent. 2017, 67, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, X.; Yuan, X.; Wang, Y.; Li, F. Enhanced visible-light photocatalytic activity of a TiO2 hydrosol assisted by H2O2: Surface complexation and kinetic modeling. J. Mol. Catal. A Chem. 2016, 414, 122–129. [Google Scholar] [CrossRef]
- Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Makhotkina, O.A.; Preis, S.V.; Parkhomchuk, E.V. Water delignification by advanced oxidation processes: Homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions. Appl. Catal. B Environ. 2008, 84, 821–826. [Google Scholar] [CrossRef]
- Byrne, J.A.; Eggins, B.R.; Brown, N.M.D.; McKinney, B.; Rouse, M. Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B Environ. 1998, 17, 25–36. [Google Scholar] [CrossRef]
- Lopez, L.; Panther, B.C.; Turney, T.W. Contaminant effects on the photo-oxidation of greywater over titania film catalysts. J. Water Process. Eng. 2015, 7, 46–53. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sanchez-Perez, J.A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef]
- Chin, W.H.; Roddick, F.A.; Harris, J.L. Greywater treatment by UVC/H2O2. Water Res. 2009, 43, 3940–3947. [Google Scholar] [CrossRef]
- Antonio da Silva, D.; Cavalcante, R.P.; Cunha, R.F.; Machulek, A.J.; Cesar de Oliveira, S. Optimization of nimesulide oxidation via a UV-ABC/H2O2 treatment process: Degradation products, ecotoxicological effects, and their dependence on the water matrix. Chemosphere 2018, 207, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Gulyas, H.; Jain, H.B.; Susanto, A.L.; Malekpur, M.; Harasiuk, K.; Krawczyk, I.; Choromanski, P.; Furmanska, M. Solar photocatalytic oxidation of pretreated wastewaters: Laboratory scale generation of design data for technical-scale double-skin sheet reactors. Environ. Technol. 2005, 26, 501–514. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Zúñiga-Benítez, H.; Peñuela, G.A. Solar lab and pilot scale photo-oxidation of ethylparaben using H2O2 and TiO2 in aqueous solutions. J. Photochem. Photobiol. A Chem. 2017, 337, 62–70. [Google Scholar] [CrossRef]
- Selishchev, D.; Kozlov, D. Photocatalytic oxidation of diethyl sulfide vapor over TiO2-based composite photocatalysts. Molecules 2014, 19, 21424–21441. [Google Scholar] [CrossRef] [Green Version]
- Elmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010, 252, 46–52. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Park, B.; Choi, J.; Thokchom, B.; Pandit, A.B.; Khim, J. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018, 45, 29–49. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Shi, J.; Hu, H.; Shangguan, W. Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde. Catal. Today 2007, 126, 359–368. [Google Scholar] [CrossRef]
- Jung, S.-C.; Kim, S.-J.; Imaishi, N.; Cho, Y.-I. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal–organic chemical vapor deposition on photocatalytic activities. Appl. Catal. B Environ. 2005, 55, 253–257. [Google Scholar] [CrossRef]
- Li Puma, G.; Brucato, A. Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption–scattering models. Catal. Today 2007, 122, 78–90. [Google Scholar] [CrossRef]
- Sillanpaa, M.; Ncibi, M.C.; Matilainen, A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manag. 2018, 208, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Gągol, M.; Przyjazny, A.; Boczkaj, G. Wastewater treatment by means of advanced oxidation processes based on cavitation—A review. Chem. Eng. J. 2018, 338, 599–627. [Google Scholar] [CrossRef]
- Abdel-Maksoud, Y.K.; Imam, E.; Ramadan, A.R. TiO2 water-bell photoreactor for wastewater treatment. Sol. Energy 2018, 170, 323–335. [Google Scholar] [CrossRef]
- Molnar, J.J.; Agbaba, J.R.; Dalmacija, B.D.; Klasnja, M.T.; Dalmacija, M.B.; Kragulj, M.M. A comparative study of the effects of ozonation and TiO2-catalyzed ozonation on the selected chlorine disinfection by-product precursor content and structure. Sci. Total Environ. 2012, 425, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Gracia, R. TiO2-catalysed ozonation of raw Ebro river water. Water Res. 2000, 34, 1525–1532. [Google Scholar] [CrossRef]
- Molnar, J.; Agbaba, J.; Dalmacija, B.; Klašnja, M.; Watson, M.; Kragulj, M. Effects of Ozonation and Catalytic Ozonation on the Removal of Natural Organic Matter from Groundwater. J. Environ. Eng. 2012, 138, 804–808. [Google Scholar] [CrossRef]
- Ma, J. Degradation of atrazine by manganese-catalysed ozonation—Influence of radical scavengers. Water Res. 2000, 34, 3822–3828. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.; Zhang, W.; Fan, X.; Wang, Y.; Zhang, H. Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates. Chem. Eng. J. 2018, 353, 626–634. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Wang, S.; Shiraishi, F.; Nakano, K. A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chem. Eng. J. 2002, 87, 261–271. [Google Scholar] [CrossRef]
- Lamsal, R.; Walsh, M.E.; Gagnon, G.A. Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res. 2011, 45, 3263–3269. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Lo, W.H. Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment. Water Res. 2009, 43, 4079–4091. [Google Scholar] [CrossRef] [PubMed]
- Beniwal, D.; Taylor-Edmonds, L.; Armour, J.; Andrews, R.C. Ozone/peroxide advanced oxidation in combination with biofiltration for taste and odour control and organics removal. Chemosphere 2018, 212, 272–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutterbeck, C.A.; Machado, E.L.; Kummerer, K. Photodegradation of the antineoplastic cyclophosphamide: A comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes. Chemosphere 2015, 120, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Wiedmer, D.; Sagstuen, E.; Welch, K.; Haugen, H.J.; Tiainen, H. Oxidative power of aqueous non-irradiated TiO2-H2O2 suspensions: Methylene blue degradation and the role of reactive oxygen species. Appl. Catal. B Environ. 2016, 198, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.C.; Yoshino, F.; Shoji, H.; Takahashi, S.; Todoki, K.; Shimada, S.; Kuse-Barouch, K. Characterization by electron spin resonance spectroscopy of reactive oxygen species generated by titanium dioxide and hydrogen peroxide. J. Dent. Res. 2005, 84, 178–182. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Meeyoo, V.; Saito, N.; Hunsom, M. Effect of electron acceptors H2O2 and O2 on the generated reactive oxygen species 1O2 and OH in TiO2-catalyzed photocatalytic oxidation of glycerol. Chin. J. Catal. 2016, 37, 1975–1981. [Google Scholar] [CrossRef]
- Sakkas, V.A.; Calza, P.; Islam, M.A.; Medana, C.; Baiocchi, C.; Panagiotou, K.; Albanis, T. TiO2/H2O2 mediated photocatalytic transformation of UV filter 4-methylbenzylidene camphor (4-MBC) in aqueous phase: Statistical optimization and photoproduct analysis. Appl. Catal. B Environ. 2009, 90, 526–534. [Google Scholar] [CrossRef]
- Domínguez, J.R.; Beltrán, J.; Rodríguez, O. Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82−, O3, H2O2, S2O82−, Fe3+/H2O2 and Fe3+/H2O2/C2O42−) for dyes treatment. Catal. Today 2005, 101, 389–395. [Google Scholar] [CrossRef]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process. Process Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Pérez-Lucas, G.; Aliste, M.; Vela, N.; Garrido, I.; Fenoll, J.; Navarro, S. Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation. Process Saf. Environ. Prot. 2020, 137, 358–365. [Google Scholar] [CrossRef]
- Alrousan, D.M.A.; Dunlop, P.S.M. Evaluation of ozone-based oxidation and solar advanced oxidation treatment of greywater. J. Environ. Chem. Eng. 2020, 8. [Google Scholar] [CrossRef]
All Represented by (mg/L) Unless Otherwise Was Stated | Jordan GW Standard JS1776:2013 for Different Uses [11] | Measured ± STD | ||
---|---|---|---|---|
Cooked Vegetables Irrigation | Raw Vegetables Irrigation | Toilet Flushing | ||
Biochemical oxygen demand (BOD5) | 60 | 60 | 347 ± 31.2 | |
Chemical oxygen demand (COD) | 120 | 120 | <10 | 380 ± 28.6 |
Total organic carbon (TOC) | - | - | <20 | 126.4 ± 13.2 |
Total suspended solids (TSS) | 100 | 100 | - | 45.3 ± 7.42 |
pH (unitless) | 6–9 | 6-9 | <10 | 7.72 ± 0.14 |
70 | 70 | 6–9 | 0.375 ± 0.12 | |
Total nitrogen (TN) | 50 | 50 | 70 | 24.1 ± 2.27 |
Turbidity (NTU) | - | - | 50 | 57.8 ± 3.52 |
E. coli (CFU/100 mL) | 104 | 103 | <5 | 1.1 × 104 ± 1.89 × 103 |
Intestinal helminths eggs | <1 | <1 | <10 | 0 |
Fat oil and grease (FOG) | 8 | 8 | <1 | 8.8 ± 1.5 |
Cl- | 500 | 500 | 8 | 425.3 ± 22.57 |
500 | 500 | 500 | 114.1 ± 8.72 | |
500 | 0.067 ± 0.08 | |||
Total phosphorous (TP) | 15 | 15 | 1.36 ± 0.37 | |
Conductivity (µS/cm) | - | - | 15 | 724.6 ± 0.27 |
Parameter | Description |
---|---|
Outer diameter | 135 mm |
Inner diameter | 131 mm |
Height | 150 mm |
Reactor total volume | 2.020 L |
Reactor water volume | 1.50 L |
Irradiated area | 134.71 cm2 |
Propeller position | 40 mm above the base of the reactor |
Propeller diameter | 65 mm |
Light source position | 4 cm below the base of the reactor |
UVA source | 2 UVA lamps, emitted radiation (340–460) nm, Max. emission at 365 nm |
Visible light source | 2 fluorescent lamps, emitted radiation (400–700) nm, Max. emission at 550 nm |
Experiment | Air Flow (L/min) | TiO2 Loading (mg/cm2) | O3 Flow Rate (mg/min) | H2O2 Dosage (mg/L) | Light Exposure Conditions c |
---|---|---|---|---|---|
Control experiments | 0 or 5 | 0–1.98 | 0.00 | 0.00 | dark and UVA |
TiO2 photocatalysis (TiO2/UVA) | 5 | 0.19–1.98 | 0.00 | 0.00 | UVA |
Ozonation (O3/dark) | 5 | 0.00 | 8.3–41.7 | 0.00 | dark |
Catalytic ozonation (O3/TiO2/dark) | 5 | 0.19–1.98 | 8.3–41.7 | 0.00 | dark |
Ozone photolysis (O3/UVA) | 5 | 0.00 | 8.3–41.7 | 0.00 | UVA |
photocatalytic ozonation (O3/TiO2/UVA) | 5 | 0.19–1.98 | 8.3–41.7 | 0.00 | UVA |
H2O2-peroxidation (H2O2/dark) | 5 | 0.00 | 0.00 | 1.45–53.01 | dark |
(H2O2/TiO2/dark) a | 5 | 0.19–1.98 | 0.00 | 1.45–53.01 | dark |
(H2O2/UVA) a | 5 | 0.00 | 0.00 | 1.45–53.01 | UVA |
(H2O2/TiO2/UVA) a | 5 | 0.19–1.98 | 0.00 | 1.45–53.01 | UVA |
(H2O2/TiO2/Vis) a | 5 | 0.19–1.98 | 0.00 | 1.45–53.01 | visible |
Peroxonation (H2O2/O3/dark) b | 5 | 0.00 | 8.3–25 | 141.1–1487.5 | dark |
Photo-peroxonation (H2O2/O3/UVA) b | 5 | 0.00 | 8.3–25 | 141.1–1487.5 | UVA |
Catalytic peroxonation (H2O2/O3/TiO2/dark) b | 5 | 0.98 | 8.3–25 | 141.1–1487.5 | dark |
Photocatalytic peroxonation (H2O2/O3/TiO2/UVA) b | 5 | 0.98 | 8.3–25 | 141.1–1487.5 | UVA |
Catalyst Loading (mg/cm2) | Maximum Removal % | Pseudo-First Kinetic Fitting | |
---|---|---|---|
Apparent Rate Constant (k) × 104 | R2 | ||
0.19 | 11.40 ± 0.27 | 6.43 ± 0.14 | 0.994 |
0.53 | 13.50 ± 0.41 | 7.83 ± 0.42 | 0.970 |
0.96 | 30.98 ± 0.75 | 22.10 ± 1.12 | 0.972 |
1.35 | 26.25 ± 0.91 | 18.41 ± 0.71 | 0.984 |
1.61 | 17.44 ± 1.72 | 12.53 ± 0.67 | 0.970 |
1.98 | 9.45 ± 0.60 | 5.86 ± 0.39 | 0.954 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrousan, D.; Afkhami, A.; Bani-Melhem, K.; Dunlop, P. Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes. Water 2020, 12, 2811. https://doi.org/10.3390/w12102811
Alrousan D, Afkhami A, Bani-Melhem K, Dunlop P. Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes. Water. 2020; 12(10):2811. https://doi.org/10.3390/w12102811
Chicago/Turabian StyleAlrousan, Dheaya, Arsalan Afkhami, Khalid Bani-Melhem, and Patrick Dunlop. 2020. "Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes" Water 12, no. 10: 2811. https://doi.org/10.3390/w12102811
APA StyleAlrousan, D., Afkhami, A., Bani-Melhem, K., & Dunlop, P. (2020). Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes. Water, 12(10), 2811. https://doi.org/10.3390/w12102811