Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface
Abstract
:1. Introduction
2. Experimental Approach
2.1. Experiment Setup
2.2. Solution Preparation
3. Results and Discussion
3.1. Bubble Collapse Far from the Liquid-Liquid Interface (γ = 1.36, ζ = 0.02519)
3.2. Bubble Collapse Medium From the Liquid-Liquid Interface (γ = 1.1, ζ = 0.0388)
3.3. Bubble Collapse Close to the Liquid-Liquid Interface (γ = 0.951, ζ = 0.052)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koda, R.; Origasa, T.; Nakajima, T.; Yamakoshi, Y. Observing Bubble Cavitation by Back-Propagation of Acoustic Emission Signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 66, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Iben, U.; Makhnov, A.; Schmidt, A. In Numerical study of a vapor bubble collapse near a solid wall. J. Phys. Conf. Ser. 2018, 1135, 012096. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.-L.; Deng, J.; Zhai, Y.; Zhang, Q. Experimental Study on the Impact Characteristics of Cavitation Bubble Collapse on a Wall. Water 2018, 10, 1262. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.-W.; Ji, B.; Tsujimoto, Y. A review of cavitation in hydraulic machinery. J. Hydrodyn. 2016, 28, 335–358. [Google Scholar] [CrossRef]
- Jeong, J.; Jang, D.; Kim, D.; Lee, D.; Chung, S.K. Acoustic bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. Sens. Actuators A Phys. 2020, 306, 111973. [Google Scholar] [CrossRef]
- Zabbey, N.; Olsson, G. Conflicts—Oil Exploration and Water. Glob. Chall. 2017, 1, 1600015. [Google Scholar] [CrossRef] [Green Version]
- Kaci, M.; Arab-Tehrany, E.; Desjardins, I.; Banon-Desobry, S.; Desobry, S. Emulsifier free emulsion: Comparative study between a new high frequency ultrasound process and standard emulsification processes. J. Food Eng. 2017, 194, 109–118. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Tian, Z.-L.; Wang, S.-P. Dynamical behavior of an oscillating bubble initially between two liquids. Phys. Fluids 2019, 31, 092111. [Google Scholar] [CrossRef]
- Johansen, K.; Song, J.H.; Johnston, K.; Prentice, P. Deconvolution of acoustically detected bubble-collapse shock waves. Ultrasonics 2017, 73, 144–153. [Google Scholar] [CrossRef]
- Koukouvinis, P.; Gavaises, M.; Supponen, O.; Farhat, M. Simulation of bubble expansion and collapse in the vicinity of a free surface. Phys. Fluids 2016, 28, 052103. [Google Scholar] [CrossRef]
- Lauterborn, W. High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 1972, 21, 27. [Google Scholar] [CrossRef]
- Lechner, C.; Koch, M.; Lauterborn, W.; Mettin, R. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach. J. Acoust. Soc. Am. 2017, 142, 3649–3659. [Google Scholar] [CrossRef] [PubMed]
- Plesset, M.S. The Dynamics of Cavitation Bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Blake, J.R.; Gibson, D.C. Cavitation Bubbles Near Boundaries. Annu. Rev. Fluid Mech. 1987, 19, 99–123. [Google Scholar] [CrossRef]
- Lindau, O.; Lauterborn, W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 2003, 479, 327–348. [Google Scholar] [CrossRef]
- Garen, W.; Hegedus, F.; Kai, Y.; Koch, S.; Meyerer, B.; Neu, W.; Teubner, U. Shock wave emission during the collapse of cavitation bubbles. Shock. Waves 2016, 26, 385–394. [Google Scholar] [CrossRef]
- Lauterborn, W.; Vogel, A. Shock wave emission by laser generated bubbles. In Bubble Dynamics and Shock Waves; Springer: Berlin/Heidelberg, Germany, 2013; pp. 67–103. [Google Scholar]
- Shima, A.; Takayama, K.; Tomita, Y.; Miura, N. An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse. Acta Acust. United Acust. 1981, 48, 293–301. [Google Scholar]
- Stride, E.; Saffari, N. Microbubble ultrasound contrast agents: A review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2003, 217, 429–447. [Google Scholar] [CrossRef]
- Supponen, O.; Obreschkow, D.; Tinguely, M.; Kobel, P.; Dorsaz, N.; Farhat, M. Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 2016, 802, 263–293. [Google Scholar] [CrossRef] [Green Version]
- Blake, J.R. The Kelvin impulse: Application to cavitation bubble dynamics. J. Aust. Math. Soc. Ser. B. Appl. Math. 1988, 30, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Chahine, G.L. Oscillation and Collapse of a Cavitation Bubble in the Vicinity of a Two-Liquid Interface; Springer: Berlin/Heidelberg, Gremany, 1980. [Google Scholar]
- Orthaber, U.; Zevnik, J.; Petkovšek, R.; Dular, M. Cavitation bubble collapse in a vicinity of a liquid-liquid interface—Basic research into emulsification process. Ultrason. Sonochem. 2020, 68, 105224. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Huang, Z.; Tu, C.; Gao, X.; Bao, F. Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface. Water 2020, 12, 2794. https://doi.org/10.3390/w12102794
Yin Z, Huang Z, Tu C, Gao X, Bao F. Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface. Water. 2020; 12(10):2794. https://doi.org/10.3390/w12102794
Chicago/Turabian StyleYin, Zhaoqin, Zemin Huang, Chengxu Tu, Xiaoyan Gao, and Fubing Bao. 2020. "Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface" Water 12, no. 10: 2794. https://doi.org/10.3390/w12102794
APA StyleYin, Z., Huang, Z., Tu, C., Gao, X., & Bao, F. (2020). Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface. Water, 12(10), 2794. https://doi.org/10.3390/w12102794