Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LULC Characterization
2.3. Sampling
2.4. Water Characterization
2.5. Sediment Characterization
Quality Control
2.6. Statistical Treatment of Data
3. Results
3.1. LULC Description
3.2. Stream Water Characterization
3.2.1. In Situ Parameters
3.2.2. Nutrients and Organic Descriptors
3.2.3. The Effect of LULC and Hydrogeomorphology on the Water Quality
3.3. Sediment Characterization
3.3.1. Physico-Chemical Parameters
3.3.2. Potentially Toxic Metals
3.3.3. The Effect of Textural Properties and LULC on the Sediments Quality
4. Discussion
4.1. LULC and Hydrogeomorphology Influence on the Physico-Chemical Characteristics of the Tributaries
4.2. Influence of the Tributaries on the Water Quality of Reservoirs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahtiainen, H.; Öhman, M.C. Ecosystem Services in the Baltic Sea: Valuation of Marine and Coastal Ecosystem Services in the Baltic Sea; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Tagliapietra, D.; Povilanskas, R.; Razinkovas-Baziukas, A.; Tamin, J. Emerald growth: A new framework concept for managing ecological quality and ecosystem services of transitional waters. Water (Switzerland) 2020, 12, 894. [Google Scholar] [CrossRef][Green Version]
- Arenas-Sánchez, A.; Rico, A.; Vighi, M. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art. Sci. Total Environ. 2016, 572, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adapt; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Ignatius, A.R.; Rasmussen, T.C. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA. J. Hydrol. Reg. Stud. 2016, 8, 145–161. [Google Scholar] [CrossRef][Green Version]
- Palma, P.; Ledo, L.; Soares, S.; Barbosa, I.R.; Alvarenga, P. Spatial and temporal variability of the water and sediments quality in the alqueva reservoir (Guadiana Basin; Southern Portugal). Sci. Total Environ. 2014, 470, 780–790. [Google Scholar] [CrossRef]
- Tan, X.; Yu, X.; Cai, L.; Wang, J.; Peng, J. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere 2019, 221, 834–840. [Google Scholar] [CrossRef]
- Terechovs, A.K.E.; Ansari, A.J.; McDonald, J.A.; Khan, S.J.; Hai, F.I.; Knott, N.A.; Zhou, J.; Nghiem, L.D. Occurrence and bioconcentration of micropollutants in Silver Perch (Bidyanus bidyanus) in a reclaimed water reservoir. Sci. Total Environ. 2019, 650, 585–593. [Google Scholar] [CrossRef]
- Khan, M.B.; Dai, X.; Ni, Q.; Zhang, C.; Cui, X.; Lu, M.; Deng, M.; Yang, X.; He, Z. Toxic Metal Pollution and Ecological Risk Assessment in Sediments of Water Reservoirs in Southeast China. Soil Sediment Contam. 2019, 28, 695–715. [Google Scholar] [CrossRef]
- Bonansea, M.; Ledesma, C.; Rodriguez, M.C. Assessing the impact of land use and land cover on water quality in the watershed of a reservoir. Appl. Ecol. Environ. Res. 2016, 14, 447–456. [Google Scholar] [CrossRef]
- Han, C.; Zheng, B.; Qin, Y.; Ma, Y.; Yang, C.; Liu, Z.; Cao, W.; Chi, M. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir. Sci. Total Environ. 2018, 610, 1546–1556. [Google Scholar] [CrossRef]
- Woldeab, B.; Ambelu, A.; Mereta, S.T.; Beyene, A. Effect of watershed land use on tributaries’ water quality in the east African Highland. Environ. Monit. Assess. 2019, 191, 36. [Google Scholar] [CrossRef] [PubMed]
- Pullanikkatil, D.; Palamuleni, L.; Ruhiiga, T. Impact of land use on water quality in the Likangala catchment, southern Malawi D Pullanikkatil, LG Palamuleni & TM Ruhiiga AFRICAN JOURNAL OF AQUATIC SCIENCE. Afr. J. Aquat. Sci. 2015, 40, 277–286. [Google Scholar] [CrossRef][Green Version]
- Mello, K.; Valente, R.A.; Randhir, T.O.; Santos, A.C.A.; Vettorazzia, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Hering, D.; Carvalho, L.; Argillier, C.; Beklioglu, M.; Borja, A.; Cardoso, A.C.; Duel, H.; Ferreira, T.; Globevnik, L.; Hanganu, J.; et al. Managing aquatic ecosystems and water resources under multiple stress—An introduction to the MARS project. Sci. Total Environ. 2015, 503, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Canuto, N.; Ramos, T.B.; Oliveira, A.R.; Simionesei, L.; Basso, M.; Neves, R. Influence of reservoir management on Guadiana streamflow regime. J. Hydrol. Reg. Stud. 2019, 25, 100628. [Google Scholar] [CrossRef]
- Morais, M.M.; Serafim, A.M.; Pinto, P.; Ilhéu, A.; Ruivo, M. Reservoir and River Basin Management. Exchange of Experiences from Brazil, Portugal and Germany; Univerlagtu: Berlin, Germany, 2007. [Google Scholar]
- Palma, P.; Alvarenga, P.; Palma, V.L.; Fernandes, R.M.; Soares, A.M.V.M.; Barbosa, I.R. Assessment of anthropogenic sources of water pollution using multivariate statistical techniques: A case study of the Alqueva’s reservoir, Portugal. Environ. Monit. Assess. 2010, 165, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Diogo, P.A.; Fonseca, M.; Coelho, P.S.; Mateus, N.S.; Almeida, M.C.; Rodrigues, A.C. Reservoir phosphorous sources evaluation and water quality modeling in a transboundary watershed. Desalination 2008, 226, 200–214. [Google Scholar] [CrossRef]
- Chícharo, L.; Chícharo, M.A.; Ben-Hamadou, R. Use of a hydrotechnical infrastructure (Alqueva Dam) to regulate planktonic assemblages in the Guadiana estuary: Basis for sustainable water and ecosystem services management. Estuar. Coast. Shelf Sci. 2006, 70, 3–18. [Google Scholar] [CrossRef]
- Collares-Pereira, M.J.; Cowx, I.G.; Ribeiro, F.; Rodrigues, J.A.; Rogado, L. Threats imposed by water resource development schemes on the conservation of endangered fish species in the Guadiana River Basin in Portugal. Fish. Manag. Ecol. 2000, 7, 167–178. [Google Scholar] [CrossRef]
- Filipe, A.F.; Marques, T.A.; Tiago, P.; Ribeiro, F.; da Costa, L.M.; Cowx, I.G.; Collares-Pereira, M.J.; Collares-Pereira, M.J. Selection of Priority Areas for Fish Conservation in Guadiana River Basin, Iberian Peninsula. Conserv. Biol. 2004, 18, 189–200. [Google Scholar] [CrossRef]
- Galvão, H.; Reis, M.; Valério, E.; Domingues, R.; Costa, C.; Lourenço, D.; Condinho, S.; Miguel, R.; Barbosa, A.; Gago, C.; et al. Cyanobacterial blooms in natural waters in southern Portugal: A water management perspective. Aquat. Microb. Ecol. 2008, 53, 129–140. [Google Scholar] [CrossRef]
- Palma, P.; López-Orozco, R.; Lourinha, C.; Oropesa, A.L.; Novais, M.H.; Alvarenga, P. Assessment of the environmental impact of an abandoned mine using an integrative approach: A case-study of the “Las Musas” mine (Extremadura, Spain). Sci. Total Environ. 2019, 659, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Valério, E.; Faria, N.; Paulino, S.; Pereira, P. Seasonal variation of phytoplankton and cyanobacteria composition and associated microcystins in six Portuguese freshwater reservoirs. Ann. Limnol. Int. J. Limnol. 2008, 44, 189–196. [Google Scholar] [CrossRef][Green Version]
- Palma, P.; Köck-Schulmeyer, M.; Alvarenga, P.; Ledo, L.; de Alda, M.L.; Barceló, D. Occurrence and potential risk of currently used pesticides in sediments of the Alqueva reservoir (Guadiana Basin). Environ. Sci. Pollut. Res. 2015, 22, 7665–7675. [Google Scholar] [CrossRef]
- Palma, P.; Köck-Schulmeyer, M.; Alvarenga, P.; Ledo, L.; Barbosa, I.R.; López de Alda, M.; Barceló, D. Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Sci. Total Environ. 2014, 488, 208–219. [Google Scholar] [CrossRef]
- Palma, P.; Kuster, M.; Alvarenga, P.; Palma, V.L.; Fernandes, R.M.; Soares, A.M.V.M.; López de Alda, M.J.; Barceló, D.; Barbosa, I.R. Risk assessment of representative and priority pesticides, in surface water of the Alqueva reservoir (South of Portugal) using on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. Environ. Int. 2009, 35, 545–551. [Google Scholar] [CrossRef]
- Palma, P.; Ledo, L.; Alvarenga, P. Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). Catena 2015, 128, 174–184. [Google Scholar] [CrossRef][Green Version]
- Iakunin, M.; Salgado, R.; Potes, M. Breeze effects at a large artificial lake: Summer case study. Hydrol. Earth Syst. Sci. 2018, 22, 5191–5210. [Google Scholar] [CrossRef][Green Version]
- Potes, M.; Costa, M.J.; da Silva, J.C.B.; Silva, A.M.; Morais, M. Remote sensing of water quality parameters over Alqueva Reservoir in the south of Portugal. Int. J. Remote Sens. 2011, 32, 3373–3388. [Google Scholar] [CrossRef]
- Palma, P.; Ledo, L.; Alvarenga, P. Ecotoxicological endpoints, are they useful tools to support ecological status assessment in strongly modified water bodies? Sci. Total Environ. 2016, 541, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Ledo, L.; Soares, S.; Barbosa, I.R.; Alvarenga, P. Integrated environmental assessment of freshwater sediments: A chemical and ecotoxicological approach at the Alqueva reservoir. Environ. Geochem. Health 2014, 36, 209–223. [Google Scholar] [CrossRef]
- APA (Agência Portuguesa do Ambiente) Plano de gestão de região hidrográfica 2016/2021. Parte 2. Caracterização e diagnóstico, Anexo IV. 2016. Available online: https://apambiente.pt/_zdata/Politicas/Agua/PlaneamentoeGestao/PGRH/2016-021/PTRH7/PGRH7_Parte5_AnexoII_1.pdf (accessed on 10 July 2020).
- Silva, Á.; de Lima, M.I.P.; Santo, F.E.; Pires, V. Assessing changes in drought and wetness episodes in drainage basins using the Standardized Precipitation Index. Bodenkultur 2014, 65, 31–37. [Google Scholar]
- Potes, M.; Salgado, R.; Costa, M.J.; Morais, M.; Bortoli, D.; Kostadinov, I.; Mammarella, I. Lake–atmosphere interactions at Alqueva reservoir: A case study in the summer of 2014. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1272787. [Google Scholar] [CrossRef][Green Version]
- IPMA. Situação de Seca Meteorológica. Available online: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20180406/pryhFYgszRoHXedniacN/cli_20180331_20180331_sec_mm_co_pt.pdf (accessed on 10 July 2020).
- Godinho, S.; Guiomar, N.; Machado, R.; Santos, P.; Sá-Sousa, P.; Fernandes, J.P.; Neves, N.; Pinto-Correia, T. Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor. Syst. 2016, 90, 177–192. [Google Scholar] [CrossRef][Green Version]
- APHA (America Public Health Association). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; America Public Health Association: New York, NY, USA, 2017. [Google Scholar]
- USEPA. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Tech. Man; EPA-823-B-01-002; EPA Region V.: Chicago, IL, USA, 2001. [Google Scholar]
- LNEC (Laboratório Nacional de Engenharia Civil). E 196—Solos. Análise Granulométrica; LNEC: Lisboa, Portugal, 1966. [Google Scholar]
- ISO (International Organization for Standardization). ISO 11466: Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; ISO: Geneve, Switzerland, 1995. [Google Scholar]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Alberto, W.D.; Del Pilar, D.M.; Valeria, A.M.; Fabiana, P.S.; Cecilia, H.A.; De Los Angeles, B.M. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Cordoba-Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Agencia Portuguesa Ambiente (APA). Plano de Gestão de Região Hidrográfica 2016/2021: Região Hidrográfica do Guadiana (RH7); Agencia Portuguesa Ambiente (APA): Lisboa, Portugal, 2016. [Google Scholar]
- Palma, P.; Matos, C.; Alvarenga, P.; Köck-Schulmeyer, M.; Simões, I.; Barceló, D.; López de Alda, M.J. Ecological and ecotoxicological responses in the assessment of the ecological status of freshwater systems: A case-study of the temporary stream Brejo of Cagarrão (South of Portugal). Sci. Total Environ. 2018, 634, 394–406. [Google Scholar] [CrossRef]
- Instituto da Água. Relatório Síntese Sobre a Caracterização das Regiões Hidrográficas Prevista na Directiva-Quadro da Água; Instituto da Água: Lisboa, Portugal, 2005; p. 163. Available online: https://www.apambiente.pt/dqa/assets/relatorio_artigo_5_pt.pdf (accessed on 16 July 2020).
- Rowlatt, S.M.; Lovell, D.R. Lead, zinc and chromium in sediments around England and Wales. Mar. Pollut. Bull. 1994, 28, 324–329. [Google Scholar] [CrossRef]
- Oliveira, A.; Palma, C.; Valença, M. Heavy metal distribution in surface sediments from the continental shelf adjacent to Nazaré canyon. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 2420–2432. [Google Scholar] [CrossRef]
- Petersen, J.C.; Justus, B.G.; Meredith, B.J. Effects of Land Use, Stream Habitat, and Water Quality on Biological Communities of Wadeable Streams in the Illinois River Basin of Arkansas, 2011 and 2012; US Geological Survey No.2014-5009: Reston, VA, USA, 2014. [Google Scholar]
- Cardoso-Silva, S.; de Lima Ferreira, P.A.; Figueira, R.C.L.; da Silva, D.C.V.R.; Moschini-Carlos, V.; Pompêo, M.L.M. Factors that control the spatial and temporal distributions of phosphorus, nitrogen, and carbon in the sediments of a tropical reservoir. Environ. Sci. Pollut. Res. 2018, 25, 31776–31789. [Google Scholar] [CrossRef][Green Version]
- Fletcher, R.; Welsh, P.F.P. Guidelines for Identify, Assessing and Managing Contaminated Sediments in Ontario: An Integrated Approach; Water Resources Branch: Toronto, ON, Canada, 2008. [Google Scholar]
- CCME—Canadian Council of Ministers for the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic life: Summary Tables; CCME: Winnipeg, MB, Canada, 2002. Available online: http://st-ts.ccme.ca/ (accessed on 12 July 2020).
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Nunes, J.P.; Jacinto, R.; Keizer, J.J. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Sci. Total Environ. 2017, 584, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, V.; Estrany, J.; Ranzini, M.; de Cicco, V.; Martín-Benito, J.M.T.; Hedo, J.; Lucas-Borja, M.E. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Sci. Total Environ. 2018, 622, 1553–1561. [Google Scholar] [CrossRef][Green Version]
- Stephan, K.; Kellner, E.; Freedman, Z.; Kutta, E.; Kelly, C.; Hubbart, J.; Morrissey, E. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed. Environ. Monit. Assess. 2018, 190, 586. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Du, L.F.; Liu, J.; Li, S.J.; Li, X.R.; Yang, J.F.; Zhao, T.K.; Ma, M.T. Dynamic characteristics of nitrogen and phosphorus in the representative input tributaries of Miyun Reservoir. IOP Conf. Ser. Earth Environ. Sci. 2017, 82, 012084. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.F.; Yin, W.; Ai, L.; Fang, N.F.; Tan, W.F.; Yan, F.L.; Shi, Z.H. Hydrological and environmental controls of the stream nitrate concentration and flux in a small agricultural watershed. J. Hydrol. 2017, 545, 355–366. [Google Scholar] [CrossRef]
- Batista, M.J.; Abreu, M.M.; Locutura, J.; De Oliveira, D.; Matos, J.X.; Silva, C.; Bel-Lan, A.; Martins, L. Evaluation of trace elements mobility from soils to sediments between the Iberian Pyrite Belt and the Atlantic Ocean. J. Geochem. Explor. 2012, 123, 61–68. [Google Scholar] [CrossRef][Green Version]
- Fonseca, R.; Barriga, F.J.A.S.; Fyfe, W.S. Reversing desertification by using dam reservoir sediments as agriculture soils. Episodes 1998, 21, 218–224. [Google Scholar] [CrossRef][Green Version]
- Mil-Homens, M.; Vale, C.; Raimundo, J.; Pereira, P.; Brito, P.; Caetano, M. Major factors influencing the elemental composition of surface estuarine sediments: The case of 15 estuaries in Portugal. Mar. Pollut. Bull. 2014, 84, 135–146. [Google Scholar] [CrossRef]
- Cruz, M.A.S.; de Azevedo Gonçalves, A.; de Aragão, R.; de Amorim, J.R.A.; da Mota, P.V.M.; Srinivasan, V.S.; Garcia, C.A.B.; de Figueiredo, E.E. Spatial and seasonal variability of the water quality characteristics of a river in Northeast Brazil. Environ. Earth Sci. 2019, 78, 68. [Google Scholar] [CrossRef]
- Dodds, W.K.; Jones, J.R.; Welch, E.B. Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res. 1998, 32, 1455–1462. [Google Scholar] [CrossRef]
Lf | Al | Am | Zb | |
pHpore-water | 7.5 (6.9–7.9) | 7.5 (6.8–7.9) | 7.3 (6.5–7.9) | 7.6 (6.6–7.9) |
ECpore-water (µs cm−1) | 712 (429–929) | 916 (115–1259) | 532 (44–791) | 1217 (233–1820) |
OM (%) | 5.7(1.6–39.0) | 1.2 (0.6–3.6) | 3.42 (1.4–12.1) | 4.6 (1.4–5.9) |
Granulometric Fractions | ||||
Sand (%) | 58.76 | 64.83 | 90.06 | 87.89 |
Silt (%) | 31.01 | 25.27 | 2.77 | 4.27 |
Clay (%) | 10.15 | 8.63 | 7.85 | 8.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, P.; Fialho, S.; Lima, A.; Mourinha, C.; Penha, A.; Novais, M.H.; Rosado, A.; Morais, M.; Potes, M.; Costa, M.J.; Alvarenga, P. Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region? Water 2020, 12, 2665. https://doi.org/10.3390/w12102665
Palma P, Fialho S, Lima A, Mourinha C, Penha A, Novais MH, Rosado A, Morais M, Potes M, Costa MJ, Alvarenga P. Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region? Water. 2020; 12(10):2665. https://doi.org/10.3390/w12102665
Chicago/Turabian StylePalma, Patrícia, Sofia Fialho, Ana Lima, Clarisse Mourinha, Alexandra Penha, Maria Helena Novais, Anabela Rosado, Manuela Morais, Miguel Potes, Maria João Costa, and Paula Alvarenga. 2020. "Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region?" Water 12, no. 10: 2665. https://doi.org/10.3390/w12102665