An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Electricity Data
2.3. Time Series Analysis
2.4. Calculating Energy-Intensity
3. Results and Discussion
3.1. Temporal Evolution of Electricity Use
3.2. Electricity Use by Function
3.3. System Energy-Intensity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Cost–Benefit Analysis
References
- Water UK. Public Interest Commitment; Technical Report; Water UK: London, UK, 2019. [Google Scholar]
- Perrone, D.; Murphy, J.; Hornberger, G.M. Gaining perspective on the water-energy nexus at the community scale. Environ. Sci. Technol. 2011, 45, 4228–4234. [Google Scholar] [CrossRef] [PubMed]
- Rothausen, S.G.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 2011, 1, 210. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q.; Mihelcic, J.R.; Hokanson, D.R. Embodied energy comparison of surface water and groundwater supply options. Water Res. 2011, 45, 5577–5586. [Google Scholar] [CrossRef]
- Plappally, A.; Leinhard, J. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Racoviceanu, A.I.; Karney, B.W.; Kennedy, C.A.; Colombo, A.F. Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems. J. Infrastruct. Syst. 2007, 13, 261–270. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.; Horvath, A. Life cycle energy assessment of alternative water supply systems. Int. J. Life Cycle Assess. 2006, 11, 335–343. [Google Scholar] [CrossRef]
- Siddiqi, A.; Anadon, L.D. The water–energy nexus in Middle East and North Africa. Energy Policy 2011, 39, 4529–4540. [Google Scholar] [CrossRef]
- Gallego, A.; Hospido, A.; Moreira, M.T.; Feijoo, G. Environmental performance of wastewater treatment plants for small populations. Resour. Conserv. Recycl. 2008, 52, 931–940. [Google Scholar] [CrossRef]
- Siddiqi, A.; de Weck, O.L. Quantifying End-Use Energy Intensity of the Urban Water Cycle. J. Infrastruct. Syst. 2013, 19, 474–485. [Google Scholar] [CrossRef]
- Nair, S.; George, B.; Malano, H.M.; Arora, M.; Nawarathna, B. Water–energy–greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 2014, 89, 1–10. [Google Scholar] [CrossRef]
- Veolia. H2O27: Future-Proofing UK Water; Technical Report; Veolia: London, UK, 2017. [Google Scholar]
- Watson, J.; Rai, N. Governance Interdependencies between the Water & Electricity Sectors; Technical Report; Infrastructure Transitions Research Consortium: Oxford, UK, 2013. [Google Scholar]
- Thames Water. Annual Report and Annual Performance Report 2018–2019. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Investors/Annual-report/2019/2018-19-Annual-Report-and-Annual-Performance-Report.pdf (accessed on 3 April 2019).
- United Utilities. Annual Report and Financial Statements for the Year Ended 31 March 2019. Available online: http://unitedutilities.annualreport2019.com/site-essentials/downloads/annual-report-2019 (accessed on 19 August 2019).
- Ofwat. Water 2020: Regulatory Framework for Wholesale Markets and the 2019 Price Review; Technical Report; Ofwat: Birmingham, UK, 2015.
- Stokes, J.R.; Horvath, A.; Sturm, R. Water loss control using pressure management: Life-cycle energy and air emission effects. Environ. Sci. Technol. 2013, 47, 10771–10780. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.R.; Hendrickson, T.P.; Horvath, A. Save water to save carbon and money: Developing abatement costs for expanded greenhouse gas reduction portfolios. Environ. Sci. Technol. 2014, 48, 13583–13591. [Google Scholar] [CrossRef] [PubMed]
- Spang, E.S.; Holguin, A.J.; Loge, F.J. The estimated impact of California’s urban water conservation mandate on electricity consumption and greenhouse gas emissions. Environ. Res. Lett. 2018, 13, 014016. [Google Scholar] [CrossRef]
- Kenway, S.; Binks, A.; Lane, J.; Lant, P.; Lam, K.; Simms, A. A systemic framework and analysis of urban water energy. Environ. Model. Softw. 2015, 73, 272–285. [Google Scholar] [CrossRef]
- Lam, K.L.; Kenway, S.J.; Lant, P.A. City-scale analysis of water-related energy identifies more cost-effective solutions. Water Res. 2017, 109, 287–298. [Google Scholar] [CrossRef]
- Renouf, M.A.; Kenway, S.J.; Lam, K.L.; Weber, T.; Roux, E.; Serrao-Neumann, S.; Choy, D.L.; Morgan, E.A. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework. Water Res. 2018, 137, 395–406. [Google Scholar] [CrossRef]
- Klein, G.; Krebs, M.; Hall, V.; O’Brien, T.; Blevins, B. California’s Water—Energy Relationship; Technical Report; California Energy Commission: Sacramento, CA, USA, 2005.
- Kenway, S.J.; Lam, K.L.; Stokes-Draut, J.; Sanders, K.T.; Binks, A.N.; Bors, J.; Head, B.; Olsson, G.; McMahon, J.E. Defining water-related energy for global comparison, clearer communication, and sharper policy. J. Clean. Prod. 2019, 236, 117502. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Lund, J.; Pulido-Velazquez, M. Saving energy from urban water demand management. Water Resour. Res. 2018, 54, 4265–4276. [Google Scholar] [CrossRef]
- Kenway, S.; Priestley, A.; Cook, S.; Seo, S.; Inman, M.; Gregory, A.; Hall, M. Energy Use in the Provision and Consumption of Urban Water in Australia and New Zealand; WSAA: Sydney, Australia, 2008. [Google Scholar]
- Vieira, A.S.; Beal, C.D.; Stewart, R.A. Residential water heaters in Brisbane, Australia: Thinking beyond technology selection to enhance energy efficiency and level of service. Energy Build. 2014, 82, 222–236. [Google Scholar] [CrossRef]
- Kenway, S.J.; Binks, A.; Scheidegger, R.; Bader, H.P.; Pamminger, F.; Lant, P.; Taimre, T. Household analysis identifies water-related energy efficiency opportunities. Energy Build. 2016, 131, 21–34. [Google Scholar] [CrossRef]
- Binks, A.N.; Kenway, S.J.; Lant, P.A. The effect of water demand management in showers on household energy use. J. Clean. Prod. 2017, 157, 177–189. [Google Scholar] [CrossRef]
- POST. The Water-Energy-Food Nexus; Technical Report; UK Parliamentary Office of Science and Technology (POST): London, UK, 2016. [Google Scholar]
- Konadu, D.; Fenner, R.; Richards, K.; Allwood, J. UK Water-Energy Nexus under Climate Change; Technical Report; University of Cambridge: Cambridge, UK, 2017. [Google Scholar]
- Khan, Z.; Linares, P.; García-González, J. Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments. Renew. Sustain. Energy Rev. 2017, 67, 1123–1138. [Google Scholar] [CrossRef]
- Thames Water. Our Revised Draft Water Resources Management Plan 2019. Available online: https://www.thameswater.co.uk/-/media/Site-Content/Your-water-future-2018/WRMP-Glossy.pdf (accessed on 3 April 2019).
- Thames Water. Facts and Figures. Available online: https://corporate.thameswater.co.uk/Media/Facts-and-figures (accessed on 3 April 2019).
- Thames Water. Cost Assessment Tables 2017/18. Available online: https://corporate.thameswater.co.uk/about-us/our-investors/annual-results (accessed on 3 April 2019).
- Thames Water. Our Leakage Performance. Available online: https://www.thameswater.co.uk/Help-and-Advice/Leaks/our-leakage-performance (accessed on 3 April 2019).
- Environment Agency. Final Water Resources Planning Guideline. Available online: https://naturalresources.wales/media/678424/ea-nrw-and-defra-wg-ofwat-technical-water-resources-planning-guidelines.pdf (accessed on 3 April 2019).
- Thames Water. Final Water Resources Management Plan 2015–2040. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Our-strategies-and-plans/Water-resources/Our-current-plan-WRMP14/WRMP14_Section_9.pdf (accessed on 3 April 2019).
- Spang, E.S.; Loge, F.J. A high-resolution approach to mapping energy flows through water infrastructure systems. J. Ind. Ecol. 2015, 19, 656–665. [Google Scholar] [CrossRef]
- Lam, K.L.; Kenway, S.J.; Lant, P.A. Energy use for water provision in cities. J. Clean. Prod. 2017, 143, 699–709. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- De Oliveira, E.M.; Oliveira, F.L.C. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 2018, 144, 776–788. [Google Scholar] [CrossRef]
- Kenway, S.; Lant, P.; Priestley, A.; Daniels, P. The connection between water and energy in cities: A review. Water Sci. Technol. 2011, 63, 1983–1990. [Google Scholar] [CrossRef]
- Thames Water. Annual Report and Annual Performance Report 2017/18. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Investors/Annual-report/2018/2017-18-Annual-Report-and-Annual-Performance-Report.pdf (accessed on 3 April 2019).
- UK Water Projects. Thames Gateway Water Treatment Plant: 150,000 m3/Day Desalination Plant. Available online: http://waterprojectsonline.com/case_studies/2010/Thames_Beckton_2010.pdf (accessed on 15 May 2019).
- Radcliffe, J.C. The water energy nexus in Australia–The outcome of two crises. Water Energy Nexus 2018, 1, 66–85. [Google Scholar] [CrossRef]
- Institute of Chemical Engineers. Water Challenges Make UK Desalination Plants More Likely. Available online: https://www.icheme.org/media_centre/news/2013/water-challenges-make-uk-desalination-plants-more-likely.aspx (accessed on 28 March 2019).
- Ives, M.C.; Simpson, M.; Hall, J.W. Navigating the water trilemma: A strategic assessment of long-term national water resource management options for Great Britain. Water Environ. J. 2018, 32, 546–555. [Google Scholar] [CrossRef]
- Colombo, A.F.; Karney, B.W. Impacts of leaks on energy consumption in pumped systems with storage. J. Water Resour. Plan. Manag. 2005, 131, 146–155. [Google Scholar] [CrossRef]
- Mourato, S.; Atkinson, G.; Ozdemiroglu, E.; Newcombe, J.; De Garis, Y. Does a cleaner Thames pass an economic appraisal? The value of reducing sewage overflows in the River Thames. Water Int. 2005, 30, 174–183. [Google Scholar] [CrossRef]
- Thomas, G.; Crawford, D. London Tideway Tunnels: Tackling London’s Victorian legacy of combined sewer overflows. Water Sci. Technol. 2011, 63, 80–87. [Google Scholar] [CrossRef]
- Thames Water. Who Will Pay for the Thames Tideway Tunnel? Available online: https://corporate.thameswater.co.uk/about-us/thames-tideway-tunnel/who-will-pay-for-it (accessed on 26 June 2019).
- National Audit Office. Review of the Thames Tideway Tunnel; Technical Report; DEFRA: London, UK, 2017.
- Thames Water. What Will Be the Benefits of the Thames Tideway Tunnel? Available online: https://corporate.thameswater.co.uk/about-us/thames-tideway-tunnel/what-are-the-benefits (accessed on 26 June 2019).
- Discover Water. Greenhouse Gas Emissions from English and Welsh Water Companies. Available online: https://discoverwater.co.uk/energy-emissions (accessed on 14 May 2019).
- Thames Water. Thames Water: Trunk Main Forensic Review. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Investing-in-our-network/Trunk-mains-review/Thames-Water-Trunk-Mains-Forensic-Review_Final-Findings-Report_FINALpdf.pdf (accessed on 14 May 2019).
- Venkatesh, G. Cost-benefit analysis–leakage reduction by rehabilitating old water pipelines: Case study of Oslo (Norway). Urban Water J. 2012, 9, 277–286. [Google Scholar] [CrossRef]
- Hall, J.W.; Mortazavi-Naeini, M.; Borgomeo, E.; Baker, B.; Gavin, H.; Gough, M.; Harou, J.J.; Hunt, D.; Lambert, C.; Piper, B.; et al. Risk-based water resources planning in practice: A blueprint for the water industry in England. Water Environ. J. 2019. [Google Scholar] [CrossRef]
Water Resource Zone | Population (p) | Water Demand (ML d−1) | Energy Use (GWh Year−1) | (kWh m−3) |
---|---|---|---|---|
Guildford | 150,136 | 44.7 | 10.6 | 0.65 |
Henley | 49,082 | 13.1 | 3.4 | 0.71 |
Kennet Valley | 389,946 | 98.4 | 32.9 | 0.92 |
London | 6,946,620 | 2048.1 | 389.2 | 0.52 |
SWA | 507,627 | 135.7 | 31.4 | 0.63 |
SWOX | 999,996 | 261.9 | 44.7 | 0.47 |
Thames Water | 9,043,407 | 2602.0 | 512.2 | 0.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majid, A.; Cardenes, I.; Zorn, C.; Russell, T.; Colquhoun, K.; Bañares-Alcantara, R.; Hall, J.W. An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water 2020, 12, 225. https://doi.org/10.3390/w12010225
Majid A, Cardenes I, Zorn C, Russell T, Colquhoun K, Bañares-Alcantara R, Hall JW. An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water. 2020; 12(1):225. https://doi.org/10.3390/w12010225
Chicago/Turabian StyleMajid, Aman, Iliana Cardenes, Conrad Zorn, Tom Russell, Keith Colquhoun, René Bañares-Alcantara, and Jim W. Hall. 2020. "An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK" Water 12, no. 1: 225. https://doi.org/10.3390/w12010225
APA StyleMajid, A., Cardenes, I., Zorn, C., Russell, T., Colquhoun, K., Bañares-Alcantara, R., & Hall, J. W. (2020). An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water, 12(1), 225. https://doi.org/10.3390/w12010225