An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Electricity Data
2.3. Time Series Analysis
2.4. Calculating Energy-Intensity
3. Results and Discussion
3.1. Temporal Evolution of Electricity Use
3.2. Electricity Use by Function
3.3. System Energy-Intensity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Cost–Benefit Analysis
References
- Water UK. Public Interest Commitment; Technical Report; Water UK: London, UK, 2019. [Google Scholar]
- Perrone, D.; Murphy, J.; Hornberger, G.M. Gaining perspective on the water-energy nexus at the community scale. Environ. Sci. Technol. 2011, 45, 4228–4234. [Google Scholar] [CrossRef] [PubMed]
- Rothausen, S.G.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 2011, 1, 210. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q.; Mihelcic, J.R.; Hokanson, D.R. Embodied energy comparison of surface water and groundwater supply options. Water Res. 2011, 45, 5577–5586. [Google Scholar] [CrossRef]
- Plappally, A.; Leinhard, J. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Racoviceanu, A.I.; Karney, B.W.; Kennedy, C.A.; Colombo, A.F. Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems. J. Infrastruct. Syst. 2007, 13, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.; Horvath, A. Life cycle energy assessment of alternative water supply systems. Int. J. Life Cycle Assess. 2006, 11, 335–343. [Google Scholar] [CrossRef]
- Siddiqi, A.; Anadon, L.D. The water–energy nexus in Middle East and North Africa. Energy Policy 2011, 39, 4529–4540. [Google Scholar] [CrossRef]
- Gallego, A.; Hospido, A.; Moreira, M.T.; Feijoo, G. Environmental performance of wastewater treatment plants for small populations. Resour. Conserv. Recycl. 2008, 52, 931–940. [Google Scholar] [CrossRef]
- Siddiqi, A.; de Weck, O.L. Quantifying End-Use Energy Intensity of the Urban Water Cycle. J. Infrastruct. Syst. 2013, 19, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; George, B.; Malano, H.M.; Arora, M.; Nawarathna, B. Water–energy–greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 2014, 89, 1–10. [Google Scholar] [CrossRef]
- Veolia. H2O27: Future-Proofing UK Water; Technical Report; Veolia: London, UK, 2017. [Google Scholar]
- Watson, J.; Rai, N. Governance Interdependencies between the Water & Electricity Sectors; Technical Report; Infrastructure Transitions Research Consortium: Oxford, UK, 2013. [Google Scholar]
- Thames Water. Annual Report and Annual Performance Report 2018–2019. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Investors/Annual-report/2019/2018-19-Annual-Report-and-Annual-Performance-Report.pdf (accessed on 3 April 2019).
- United Utilities. Annual Report and Financial Statements for the Year Ended 31 March 2019. Available online: http://unitedutilities.annualreport2019.com/site-essentials/downloads/annual-report-2019 (accessed on 19 August 2019).
- Ofwat. Water 2020: Regulatory Framework for Wholesale Markets and the 2019 Price Review; Technical Report; Ofwat: Birmingham, UK, 2015.
- Stokes, J.R.; Horvath, A.; Sturm, R. Water loss control using pressure management: Life-cycle energy and air emission effects. Environ. Sci. Technol. 2013, 47, 10771–10780. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.R.; Hendrickson, T.P.; Horvath, A. Save water to save carbon and money: Developing abatement costs for expanded greenhouse gas reduction portfolios. Environ. Sci. Technol. 2014, 48, 13583–13591. [Google Scholar] [CrossRef] [PubMed]
- Spang, E.S.; Holguin, A.J.; Loge, F.J. The estimated impact of California’s urban water conservation mandate on electricity consumption and greenhouse gas emissions. Environ. Res. Lett. 2018, 13, 014016. [Google Scholar] [CrossRef]
- Kenway, S.; Binks, A.; Lane, J.; Lant, P.; Lam, K.; Simms, A. A systemic framework and analysis of urban water energy. Environ. Model. Softw. 2015, 73, 272–285. [Google Scholar] [CrossRef]
- Lam, K.L.; Kenway, S.J.; Lant, P.A. City-scale analysis of water-related energy identifies more cost-effective solutions. Water Res. 2017, 109, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Renouf, M.A.; Kenway, S.J.; Lam, K.L.; Weber, T.; Roux, E.; Serrao-Neumann, S.; Choy, D.L.; Morgan, E.A. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework. Water Res. 2018, 137, 395–406. [Google Scholar] [CrossRef]
- Klein, G.; Krebs, M.; Hall, V.; O’Brien, T.; Blevins, B. California’s Water—Energy Relationship; Technical Report; California Energy Commission: Sacramento, CA, USA, 2005.
- Kenway, S.J.; Lam, K.L.; Stokes-Draut, J.; Sanders, K.T.; Binks, A.N.; Bors, J.; Head, B.; Olsson, G.; McMahon, J.E. Defining water-related energy for global comparison, clearer communication, and sharper policy. J. Clean. Prod. 2019, 236, 117502. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Lund, J.; Pulido-Velazquez, M. Saving energy from urban water demand management. Water Resour. Res. 2018, 54, 4265–4276. [Google Scholar] [CrossRef]
- Kenway, S.; Priestley, A.; Cook, S.; Seo, S.; Inman, M.; Gregory, A.; Hall, M. Energy Use in the Provision and Consumption of Urban Water in Australia and New Zealand; WSAA: Sydney, Australia, 2008. [Google Scholar]
- Vieira, A.S.; Beal, C.D.; Stewart, R.A. Residential water heaters in Brisbane, Australia: Thinking beyond technology selection to enhance energy efficiency and level of service. Energy Build. 2014, 82, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Kenway, S.J.; Binks, A.; Scheidegger, R.; Bader, H.P.; Pamminger, F.; Lant, P.; Taimre, T. Household analysis identifies water-related energy efficiency opportunities. Energy Build. 2016, 131, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Binks, A.N.; Kenway, S.J.; Lant, P.A. The effect of water demand management in showers on household energy use. J. Clean. Prod. 2017, 157, 177–189. [Google Scholar] [CrossRef] [Green Version]
- POST. The Water-Energy-Food Nexus; Technical Report; UK Parliamentary Office of Science and Technology (POST): London, UK, 2016. [Google Scholar]
- Konadu, D.; Fenner, R.; Richards, K.; Allwood, J. UK Water-Energy Nexus under Climate Change; Technical Report; University of Cambridge: Cambridge, UK, 2017. [Google Scholar]
- Khan, Z.; Linares, P.; García-González, J. Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments. Renew. Sustain. Energy Rev. 2017, 67, 1123–1138. [Google Scholar] [CrossRef]
- Thames Water. Our Revised Draft Water Resources Management Plan 2019. Available online: https://www.thameswater.co.uk/-/media/Site-Content/Your-water-future-2018/WRMP-Glossy.pdf (accessed on 3 April 2019).
- Thames Water. Facts and Figures. Available online: https://corporate.thameswater.co.uk/Media/Facts-and-figures (accessed on 3 April 2019).
- Thames Water. Cost Assessment Tables 2017/18. Available online: https://corporate.thameswater.co.uk/about-us/our-investors/annual-results (accessed on 3 April 2019).
- Thames Water. Our Leakage Performance. Available online: https://www.thameswater.co.uk/Help-and-Advice/Leaks/our-leakage-performance (accessed on 3 April 2019).
- Environment Agency. Final Water Resources Planning Guideline. Available online: https://naturalresources.wales/media/678424/ea-nrw-and-defra-wg-ofwat-technical-water-resources-planning-guidelines.pdf (accessed on 3 April 2019).
- Thames Water. Final Water Resources Management Plan 2015–2040. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Our-strategies-and-plans/Water-resources/Our-current-plan-WRMP14/WRMP14_Section_9.pdf (accessed on 3 April 2019).
- Spang, E.S.; Loge, F.J. A high-resolution approach to mapping energy flows through water infrastructure systems. J. Ind. Ecol. 2015, 19, 656–665. [Google Scholar] [CrossRef]
- Lam, K.L.; Kenway, S.J.; Lant, P.A. Energy use for water provision in cities. J. Clean. Prod. 2017, 143, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- De Oliveira, E.M.; Oliveira, F.L.C. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 2018, 144, 776–788. [Google Scholar] [CrossRef]
- Kenway, S.; Lant, P.; Priestley, A.; Daniels, P. The connection between water and energy in cities: A review. Water Sci. Technol. 2011, 63, 1983–1990. [Google Scholar] [CrossRef]
- Thames Water. Annual Report and Annual Performance Report 2017/18. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Investors/Annual-report/2018/2017-18-Annual-Report-and-Annual-Performance-Report.pdf (accessed on 3 April 2019).
- UK Water Projects. Thames Gateway Water Treatment Plant: 150,000 m3/Day Desalination Plant. Available online: http://waterprojectsonline.com/case_studies/2010/Thames_Beckton_2010.pdf (accessed on 15 May 2019).
- Radcliffe, J.C. The water energy nexus in Australia–The outcome of two crises. Water Energy Nexus 2018, 1, 66–85. [Google Scholar] [CrossRef]
- Institute of Chemical Engineers. Water Challenges Make UK Desalination Plants More Likely. Available online: https://www.icheme.org/media_centre/news/2013/water-challenges-make-uk-desalination-plants-more-likely.aspx (accessed on 28 March 2019).
- Ives, M.C.; Simpson, M.; Hall, J.W. Navigating the water trilemma: A strategic assessment of long-term national water resource management options for Great Britain. Water Environ. J. 2018, 32, 546–555. [Google Scholar] [CrossRef]
- Colombo, A.F.; Karney, B.W. Impacts of leaks on energy consumption in pumped systems with storage. J. Water Resour. Plan. Manag. 2005, 131, 146–155. [Google Scholar] [CrossRef]
- Mourato, S.; Atkinson, G.; Ozdemiroglu, E.; Newcombe, J.; De Garis, Y. Does a cleaner Thames pass an economic appraisal? The value of reducing sewage overflows in the River Thames. Water Int. 2005, 30, 174–183. [Google Scholar] [CrossRef]
- Thomas, G.; Crawford, D. London Tideway Tunnels: Tackling London’s Victorian legacy of combined sewer overflows. Water Sci. Technol. 2011, 63, 80–87. [Google Scholar] [CrossRef]
- Thames Water. Who Will Pay for the Thames Tideway Tunnel? Available online: https://corporate.thameswater.co.uk/about-us/thames-tideway-tunnel/who-will-pay-for-it (accessed on 26 June 2019).
- National Audit Office. Review of the Thames Tideway Tunnel; Technical Report; DEFRA: London, UK, 2017.
- Thames Water. What Will Be the Benefits of the Thames Tideway Tunnel? Available online: https://corporate.thameswater.co.uk/about-us/thames-tideway-tunnel/what-are-the-benefits (accessed on 26 June 2019).
- Discover Water. Greenhouse Gas Emissions from English and Welsh Water Companies. Available online: https://discoverwater.co.uk/energy-emissions (accessed on 14 May 2019).
- Thames Water. Thames Water: Trunk Main Forensic Review. Available online: https://corporate.thameswater.co.uk/-/media/Site-Content/Thames-Water/Corporate/AboutUs/Investing-in-our-network/Trunk-mains-review/Thames-Water-Trunk-Mains-Forensic-Review_Final-Findings-Report_FINALpdf.pdf (accessed on 14 May 2019).
- Venkatesh, G. Cost-benefit analysis–leakage reduction by rehabilitating old water pipelines: Case study of Oslo (Norway). Urban Water J. 2012, 9, 277–286. [Google Scholar] [CrossRef]
- Hall, J.W.; Mortazavi-Naeini, M.; Borgomeo, E.; Baker, B.; Gavin, H.; Gough, M.; Harou, J.J.; Hunt, D.; Lambert, C.; Piper, B.; et al. Risk-based water resources planning in practice: A blueprint for the water industry in England. Water Environ. J. 2019. [Google Scholar] [CrossRef] [Green Version]
Water Resource Zone | Population (p) | Water Demand (ML d−1) | Energy Use (GWh Year−1) | (kWh m−3) |
---|---|---|---|---|
Guildford | 150,136 | 44.7 | 10.6 | 0.65 |
Henley | 49,082 | 13.1 | 3.4 | 0.71 |
Kennet Valley | 389,946 | 98.4 | 32.9 | 0.92 |
London | 6,946,620 | 2048.1 | 389.2 | 0.52 |
SWA | 507,627 | 135.7 | 31.4 | 0.63 |
SWOX | 999,996 | 261.9 | 44.7 | 0.47 |
Thames Water | 9,043,407 | 2602.0 | 512.2 | 0.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majid, A.; Cardenes, I.; Zorn, C.; Russell, T.; Colquhoun, K.; Bañares-Alcantara, R.; Hall, J.W. An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water 2020, 12, 225. https://doi.org/10.3390/w12010225
Majid A, Cardenes I, Zorn C, Russell T, Colquhoun K, Bañares-Alcantara R, Hall JW. An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water. 2020; 12(1):225. https://doi.org/10.3390/w12010225
Chicago/Turabian StyleMajid, Aman, Iliana Cardenes, Conrad Zorn, Tom Russell, Keith Colquhoun, René Bañares-Alcantara, and Jim W. Hall. 2020. "An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK" Water 12, no. 1: 225. https://doi.org/10.3390/w12010225
APA StyleMajid, A., Cardenes, I., Zorn, C., Russell, T., Colquhoun, K., Bañares-Alcantara, R., & Hall, J. W. (2020). An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water, 12(1), 225. https://doi.org/10.3390/w12010225