Design of a Remote-Controlled Platform for Green Roof Plants Monitoring via Hyperspectral Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: University of Calabria’s Green Roof
2.2. Spectroradiometer Platform and Data Acquisition
2.3. Vegetation Spectral Features and Indices
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eea-foen, J. Landscape Fragmentation in Europe—EEA Report N.2/2011. 2011. Available online: https://spectrum.library.concordia.ca/981303/ (accessed on 2 July 2019).
- Marsalek, J.; Cisneros, B.J.; Karamouz, M.; Malmquist, P.A.; Goldenfum, J.A.; Chocat, B. Urban Water Cycle Processes and Interactions: Urban Water Series-UNESCO-IHP; CRC Press: Boca Raton, FL, USA, 2008; Volume 2. [Google Scholar]
- Maksimović, Č.; Prodanović, D.; Boonya-Aroonnet, S.; Leitao, J.P.; Djordjević, S.; Allitt, R. Overland flow and pathway analysis for modelling of urban pluvial flooding. J. Hydraul. Res. 2009, 47, 512–523. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M.; Tomei, G. Assessing settleability of dry and wet weather flows in an urban area serviced by combined sewers. Water Air Soil Pollut. 2011, 214, 107–117. [Google Scholar] [CrossRef]
- Oleson, K.W.; Bonan, G.B.; Feddema, J.; Jackson, T. An examination of urban heat island characteristics in a global climate model. Int. J. Climatol. 2011, 31, 1848–1865. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Jones, D. Cooling Effect of Permeable Asphalt Pavement Under Dry and Wet Conditions. Transp. Res. Rec. J. Transp. Res. Board 2013, 2372, 97–107. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Coma, J.; Pérez, G.; Chocarro, C.; Juárez, A.; Solé, C.; Cabeza, L.F. Plant cover and floristic composition effect on thermal behaviour of extensive green roofs. Build. Environ. 2015, 92, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, G.; Palermo, S.; Principato, F.; Theodosiou, T.; Piro, P. The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water 2016, 8, 44. [Google Scholar] [CrossRef]
- Brunetti, G.; Šimůnek, J.; Piro, P. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. J. Hydrol. 2016, 540, 1146–1161. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Šimůnek, J.; Turco, M.; Piro, P. On the use of surrogate-based modeling for the numerical analysis of Low Impact Development techniques. J. Hydrol. 2017, 548, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Viola, F.; Hellies, M.; Deidda, R. Retention performance of green roofs in representative climates worldwide. J. Hydrol. 2017, 553, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Brunetti, G.; Porti, M.; Piro, P. Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Appl. Energy 2018, 221, 204–219. [Google Scholar] [CrossRef]
- Schultz, I.; Sailor, D.J.; Starry, O. Effects of substrate depth and precipitation characteristics on stormwater retention by two green roofs in Portland OR. J. Hydrol. Reg. Stud. 2018, 18, 110–118. [Google Scholar] [CrossRef]
- Maiolo, M.; Carini, M.; Capano, G.; Piro, P. Synthetic Sustainability Index (SSI) based on Life Cycle Assessment approach of Low Impact Development in the Mediterranean Area. Cogent Eng. 2017, 4, 1410272. [Google Scholar] [CrossRef]
- Li, W.C.; Yeung, K.K.A. A comprehensive study of green roof performance from environmental perspective. Int. J. Sustain. Built Environ. 2014, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Sims, A.D.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Morales, A.; Testi, L.; Villalobos, F.J. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens. Environ. 2013, 133, 102–115. [Google Scholar] [CrossRef]
- Manzo, C.; Mei, A.; Zampetti, E.; Bassani, C.; Paciucci, L.; Manetti, P. Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ. 2017, 584–585, 1333–1348. [Google Scholar] [CrossRef] [PubMed]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De-Pauw, E. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–621. [Google Scholar]
- Gilabert, M.A.; Gonzalez-Piqueras, J.; Garcia-Haro, F.J.; Melia, J. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 2002, 82, 303310. [Google Scholar] [CrossRef]
- Piro, P.; Porti, M.; Veltri, S.; Lupo, E.; Moroni, M. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results. Sensors 2017, 17, 662. [Google Scholar] [CrossRef] [PubMed]
- Moroni, M.; Lupo, E.; Cenedese, A. Hyperspectral Proximal Sensing of Salix Alba Trees in the Sacco River Valley (Latium, Italy). Sensors 2013, 13, 14633–14649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892–3919. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; van Wieren, S. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS J. Photogramm. Remote Sens. 2003, 57, 263–272. [Google Scholar] [CrossRef]
- Vaiphasa, C.; Ongsomwang, S.; Vaiphasa, T.; Skidmore, A.K. Tropical mangrove species discrimination using hyperspectral data: A laboratory study. Estuar. Coast. Shelf Sci. 2005, 65, 371–379. [Google Scholar] [CrossRef]
Vegetation indices | VI acronym | Equation |
---|---|---|
Red Difference Vegetation Index | Red DVI | |
Red Green Ratio Index | IRG | |
Red Ratio Vegetation Index | Red RVI | |
Simple Ratio | SR | |
Red Normalized Difference Vegetation Index | Red NDVI | |
Normalized Difference Vegetation Index | NDVI | |
Optimized Soil Adjusted Vegetation Index | OSAVI | |
Renormalized Difference Vegetation Index | RDVI | |
Enhanced Vegetation Index | EVI | |
Modified Simple Ratio | MSR | |
Modified Triangular Vegetation Index | MTVI | |
Modified Soil Adjusted Vegetation Index | MSAVI | |
Global Environment Monitoring Index | GEMI | |
Triangular Vegetation Index | TVI |
Vegetation Index | Carpobrotus VIcontrast (%) | Cerastium VIcontrast (%) | Dianthus VIcontrast (%) |
---|---|---|---|
Red DVI | 85.58 | 82.70 | 98.51 |
IRG | 65.76 | 23.71 | 94.95 |
Red RVI | 27.64 | 32.58 | 42.50 |
SR | 69.33 | 54.87 | 76.58 |
Red NDVI | 61.15 | 53.98 | 48.34 |
NDVI | 42.59 | 27.81 | 29.90 |
OSAVI | 58.70 | 52.46 | 61.51 |
RDVI | 62.08 | 58.24 | 74.77 |
EVI | 80.70 | 77.72 | 91.71 |
MSR | 84.62 | 71.69 | 90.35 |
MTVI | 117.01 | 85.85 | 103.79 |
MSAVI | 40.37 | 41.69 | 49.47 |
GEMI | 64.14 | 60.20 | 105.33 |
TVI | 95.80 | 80.22 | 100.65 |
Vegetation Index | Θ < 20% | 20% < Θ < 45% | 45% < Θ < 60% | Θ > 60% | F-Value | p-Value |
---|---|---|---|---|---|---|
Red DVI | 0.22 | 0.20 | 0.22 | 0.19 | 0.40 | 0.759 |
IRG | 1.32 | 1.52 | 1.34 | 1.84 | 10.36 * | 0.002 |
Red RVI | 1.89 | 1.80 | 2.03 | 1.92 | 0.72 | 0.559 |
SR | 2.40 | 2.25 | 2.82 | 2.42 | 3.42 | 0.053 |
Red NDVI | 0.50 | 0.53 | 0.57 | 0.62 | 9.94 * | 0.002 |
NDVI | 0.40 | 0.37 | 0.46 | 0.41 | 4.06 * | 0.040 |
OSAVI | 0.45 | 0.42 | 0.51 | 0.45 | 3.51 | 0.053 |
RDVI | 0.29 | 0.27 | 0.32 | 0.28 | 2.03 | 0.188 |
EVI | 0.39 | 0.32 | 0.40 | 0.31 | 8.20 * | 0.008 |
MSR | 0.74 | 0.68 | 0.91 | 0.76 | 5.99 * | 0.013 |
MTVI | 0.20 | 0.15 | 0.23 | 0.15 | 1.41 | 0.302 |
MSAVI | 1.19 | 1.15 | 1.18 | 1.10 | 3.60 | 0.054 |
GEMI | 0.45 | 0.42 | 0.45 | 0.40 | 0.35 | 0.789 |
TVI | 10.39 | 10.60 | 11.51 | 8.95 | 6.35 * | 0.027 |
Vegetation Index | Θ < 20% | 20% < Θ < 45% | 45% < Θ < 60% | Θ > 60% | F-Value | p-Value |
---|---|---|---|---|---|---|
Red DVI | 0.28 | 0.29 | 0.31 | 0.28 | 0.88 | 0.480 |
IRG | 1.11 | 1.08 | 1.03 | 1.05 | 1.38 | 0.295 |
Red RVI | 1.99 | 2.02 | 2.10 | 2.17 | 8.98 * | 0.003 |
SR | 2.48 | 2.53 | 2.72 | 2.89 | 7.70 * | 0.006 |
Red NDVI | 0.46 | 0.46 | 0.47 | 0.50 | 4.90 * | 0.021 |
NDVI | 0.42 | 0.43 | 0.46 | 0.48 | 7.30 * | 0.006 |
OSAVI | 0.51 | 0.52 | 0.55 | 0.57 | 5.23 * | 0.017 |
RDVI | 0.34 | 0.35 | 0.38 | 0.37 | 1.42 | 0.289 |
EVI | 0.55 | 0.58 | 0.65 | 0.59 | 7.36 * | 0.009 |
MSR | 0.79 | 0.81 | 0.89 | 0.95 | 5.36 * | 0.016 |
MTVI | 0.29 | 0.30 | 0.34 | 0.33 | 3.83 * | 0.046 |
MSAVI | 1.32 | 1.34 | 1.38 | 1.32 | 4.78 * | 0.029 |
GEMI | 0.54 | 0.55 | 0.57 | 0.54 | 2.95 | 0.085 |
TVI | 15.82 | 16.48 | 18.44 | 15.59 | 1.38 | 0.311 |
Vegetation Index | Θ < 20% | 20% < Θ < 45% | 45% < Θ < 60% | Θ > 60% | F-Value | p-Value |
---|---|---|---|---|---|---|
Red DVI | 0.19 | 0.26 | 0.31 | 0.27 | 10.67 * | 0.002 |
IRG | 1.19 | 1.11 | 0.95 | 1.24 | 6.88 * | 0.006 |
Red RVI | 2.23 | 2.56 | 2.57 | 2.34 | 7.60 * | 0.008 |
SR | 3.01 | 3.97 | 4.17 | 3.33 | 1.25 | 0.344 |
Red NDVI | 0.56 | 0.61 | 0.58 | 0.61 | 13.82 * | 0.002 |
NDVI | 0.50 | 0.58 | 0.60 | 0.53 | 6.18 * | 0.039 |
OSAVI | 0.53 | 0.65 | 0.68 | 0.61 | 11.64 * | 0.001 |
RDVI | 0.31 | 0.40 | 0.43 | 0.38 | 12.81 * | 0.001 |
EVI | 0.40 | 0.56 | 0.67 | 0.50 | 11.09 * | 0.002 |
MSR | 1.00 | 1.31 | 1.37 | 1.11 | 1.54 | 0.255 |
MTVI | 0.24 | 0.35 | 0.41 | 0.31 | 5.36 * | 0.018 |
MSAVI | 1.10 | 1.27 | 1.36 | 1.28 | 11.77 * | 0.001 |
GEMI | 0.41 | 0.51 | 0.56 | 0.52 | 10.82 * | 0.001 |
TVI | 16.88 | 15.59 | 18.68 | 14.34 | 7.53 * | 0.014 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, M.; Porti, M.; Piro, P. Design of a Remote-Controlled Platform for Green Roof Plants Monitoring via Hyperspectral Sensors. Water 2019, 11, 1368. https://doi.org/10.3390/w11071368
Moroni M, Porti M, Piro P. Design of a Remote-Controlled Platform for Green Roof Plants Monitoring via Hyperspectral Sensors. Water. 2019; 11(7):1368. https://doi.org/10.3390/w11071368
Chicago/Turabian StyleMoroni, Monica, Michele Porti, and Patrizia Piro. 2019. "Design of a Remote-Controlled Platform for Green Roof Plants Monitoring via Hyperspectral Sensors" Water 11, no. 7: 1368. https://doi.org/10.3390/w11071368