Intraseasonal Dynamics of River Discharge and Burned Forest Areas in Siberia
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Water of Russia. Electronic Resource. Available online: http://water-rf.ru/ (accessed on 9 April 2019).
- Georgiadi, A.G.; Kashutina, E.A. Long-term runoff changes of the largest Siberian Rivers. Izv. Akad. Sci. Ser. Geogr. 2016, 5, 70–81. (In Russian) [Google Scholar] [CrossRef]
- Onuchin, A.A. The reasons for conceptual contradictions in evaluating hydrological role of boreal forests. Sib. J. For. Sci. 2015, 2, 41–54. (In Russian) [Google Scholar] [CrossRef]
- Shiklomanov, A.I.; Lammers, R.B.; Rawlins, M.A.; Smith, L.C.; Pavelsky, T.M. Temporal and spatial variations in maximum river discharge from a new Russian data set. J. Geophys. Res. 2007, 112, G04S53. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Skorobogatova, A.S.; Ponomareva, T.V. Wildfire Occurrence in Siberia and Seasonal Variations in Heat and Moisture Supply. Russ. Meteorol. Hydrol. 2018, 43, 456–463. [Google Scholar] [CrossRef]
- Bartsch, A.; Balzter, H.; George, C. Influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ. Res. Lett. 2009, 4, 045021. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Petrov, I.A.; Im, S.T.; Ranson, K.J. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals. Reg. Environ. Chang. 2016, 8, 2389–2397. [Google Scholar] [CrossRef]
- Brown, D.R.N.; Jorgenson, M.T.; Kielland, K.; Verbyla, D.L.; Prakash, A.; Koch, J.C. Landscape Effects of Wildfire on Permafrost Distribution in Interior Alaska Derived from Remote Sensing. Remote Sens. 2016, 8, 654. [Google Scholar] [CrossRef]
- Knorre, A.A.; Kirdyanov, A.V.; Prokushkin, A.S.; Krusic, P.J.; Buntgen, U. Tree ring-based reconstruction of the long-terminfluence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 2019, 652, 314–319. [Google Scholar] [CrossRef]
- Neary, D.G.; Gottfried, G.J.; Ffolliott, P.F. Post-Wildfire Watershed Flood Responses. In Proceedings of the Second International Fire Ecology and Fire Management Congress, Paper 1B7, Orlando, FL, USA, 16–20 November 2003. [Google Scholar]
- Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environ. Res. Lett. 2012, 7, 044021. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Ponomareva, T.V. The Effect of Postfire Temperature Anomalies on Seasonal Soil Thawing in the Permafrost Zone of Central Siberia Evaluated Using Remote Data. Contemp. Probl. Ecol. 2018, 11, 420–427. [Google Scholar] [CrossRef]
- Anisimov, O.A.; Sherstiukov, A.B. Evaluating the effect of environmental factors on permafrost in Russia. Earth’s Cryosph. 2016, XX, 90–99. (In Russian) [Google Scholar]
- Bezkorovaynaya, I.N.; Borisova, I.V.; Klimchenko, A.V.; Shabalina, O.M.; Zakharchenko, L.P.; Il’in, A.A.; Beskrovny, A.K. Influence of the pyrogenic factor on the biological activity of the soil in permafrost conditions (Central Evenkia). Vestn. KrasGAU 2017, 9, 181–189. (In Russian) [Google Scholar]
- Dymov, A.A.; Dubrovsky, Y.A.; Gabov, D.N. Pyrogenic Changes in Iron-Illuvial Podzols in the Middle Taiga of the Komi Republic. Eurasian Soil Sci. 2014, 47, 47–56. [Google Scholar] [CrossRef]
- Brown, D.R.N.; Jorgenson, M.T.; Douglas, T.A.; Romanovsky, V.E.; Kielland, K.; Hiemstra, C.; Euskirchen, E.S.; Ruess, R.W. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. Biogeosci. 2015, 120, 1619–1637. [Google Scholar] [CrossRef]
- Batelis, S.; Nalbantis, I. Potential effects of forest fires on streamflow in the Enipeas River Basin, Thessaly, Greece. Environ. Process. 2014, 1, 73–85. [Google Scholar] [CrossRef]
- Havel, A.; Tasdighi, A.; Arabi, M. Assessing the hydrologic response to wildfires in mountainous regions. Hydrol. Earth Syst. Sci. 2018, 22, 2527–2550. [Google Scholar] [CrossRef]
- Springer, J.; Ludwig, R.; Kienzle, S.W. Impacts of Forest Fires and Climate Variability on the Hydrology of an Alpine Medium Sized Catchment in the Canadian Rocky Mountains. Hydrology 2015, 2, 23–47. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Stieglitz, M. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 2004, 109, D18102. [Google Scholar] [CrossRef]
- Zipper, S.C.; Lamontagne-Hallé, P.; McKenzie, J.M.; Rocha, A.V. Groundwater controls on postfire permafrost thaw: Water and energy balance effects. J. Geophys. Res. Earth Surf. 2018, 123, 2677–2694. [Google Scholar] [CrossRef]
- Prokushkin, A.S.; Hobara, S.; Prokushkin, S.G. Behavior of Dissolved Organic Carbon in Larch Ecosystem. In Permafrost Ecosystems, Siberian Larch Forests; Osawa, A., Zyryanova, O.A., Matsuura, Y., Kajimoto, T., Wein, R.W., Eds.; Springer: London, UK, 2010; pp. 205–225. [Google Scholar]
- Ponomarev, E.I.; Kharuk, V.I.; Ranson, J.K. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef]
- Fedorov, A.N.; Vasilyev, N.F.; Torgovkin, Y.I.; Shestakova, A.A.; Varlamov, S.P.; Zheleznyak, M.N.; Shepelev, V.V.; Konstantinov, P.Y.; Kalinicheva, S.S.; Basharin, N.I.; et al. Permafrost-Landscape Map of the Republic of Sakha (Yakutia) on a Scale 1:1,500,000. Geosciences 2018, 8, 465. [Google Scholar] [CrossRef]
- Bring, A.; Shiklomanov, A.; Lammers, R.B. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots. Earth’s Future 2017, 5, 72–92. [Google Scholar] [CrossRef]
- Holmes, R.M.; Shiklomanov, A.I.; Tank, S.E.; McClelland, J.W.; Tretiakov, M. River Discharge; Arctic Report Card: Update for 2015. Available online: https://www.arctic.noaa.gov/Report-Card/Report-Card-2015/ArtMID/5037/ArticleID/227/River-Discharge (accessed on 18 October 2018).
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Valendik, E.N.; Ivanova, G.A. Extreme fire seasons in the boreal forests of Central Siberia. For. Sci. 1996, 4, 12–19. (In Russian) [Google Scholar]
- Ivanova, G.A. The history of forest fire in Russia. Dendrochronology 1999, 16–17, 147–161. [Google Scholar]
- Ponomarev, E.I.; Shvetsov, E.G. Satellite detection of forest fires and GIS-methods for result calibration. Issled. Zemli iz Kosmosa (Rem. Sens.) 2015, 1, 84–91. (In Russian) [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I. Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia. Russ. J. Ecol. 2017, 48, 507–512. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Monthly Product Version 7.0 at 1.0: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. 2015. [Google Scholar] [CrossRef]
- Hawkins, D. Biomeasurement. A Student’s Guide Biological Statistics, 3rd ed.; Oxford University Press: New York, NY, USA, 2014; 333p. [Google Scholar]
- De Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Woods, S.W.; Birkas, A.; Ahl, R. Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology 2007, 86, 465–479. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Miller, S.M. Spatial interpolation and simulation of post-burn duff thickness after prescribed fire. Int. J. Wildland Fire 1999, 9, 137–143. [Google Scholar] [CrossRef][Green Version]
- Im, S.T.; Kharuk, V.I. Water mass dynamics in permafrost of Central Siberia based on GRACE gravity data. Izv. Atmos. Ocean. Phys. 2015, 51, 806–818. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
River Name | Area of Basin, mln ha | Discharge, km3 | Discharge Anomaly, % | γ, % | |||
---|---|---|---|---|---|---|---|
Min. | Max. | Mean | σ | Max. | |||
Lower Tunguska | 45.6 | 108.25 | −22 | 29 | 0.49 | 0.60 | 2.99 |
Podkamennaya Tunguska | 23.8 | 49.87 | −21 | 40 | 0.51 | 0.65 | 4.12 |
Viluy | 45.5 | 47.97 | −32 | 36 | 0.76 | 1.15 | 6.13 |
Aldan | 72.8 | 173.59 | −28 | 32 | 0.67 | 0.77 | 5.21 |
River Name | Correlation Level | |||
---|---|---|---|---|
November–February | March–April | May–July | August–October | |
Lower Tunguska | −0.43 | −0.25 | −0.83 | −0.77 |
Podkamennaya Tunguska | −0.20 | −0.24 | −0.66 | −0.57 |
Viluy | −0.22 | −0.16 | −0.42 | −0.42 |
Aldan | −0.21 | −0.10 | −0.47 | −0.22 |
River Discharge Anomalies Per Month | |||||||
---|---|---|---|---|---|---|---|
April | May | June | July | August | September | ||
Relative Burned Area per Month, % | Lower Tunguska | ||||||
April | NA | NA | |||||
May | NA | NA | −0.60 | ||||
June | −0.11 | −0.64 | −0.52 * | ||||
July | −0.29 | −0.59 | −0.65 * | ||||
August | −0.81 | −0.88 | −0.68 * | ||||
Podkamennaya Tunguska | |||||||
April | NA | NA | |||||
May | 0.07 | −0.33 | −0.54 * | ||||
June | −0.23 | −0.45 | −0.49 | ||||
July | −0.34 | −0.73 | −0.68 * | ||||
August | −0.40 | −0.63 | −0.38 | ||||
Aldan | |||||||
April | −0.32 | −0.41 | |||||
May | −0.38 | −0.38 | −0.45 * | ||||
June | 0.13 | −0.44 | −0.11 | ||||
July | −0.57 | −0.21 | −0.19 | ||||
August | −0.30 | −0.52 | −0.22 | ||||
Viluy | |||||||
April | −0.33 | −0.54 * | |||||
May | 0.03 | −0.43 | −0.53 * | ||||
June | −0.40 | −0.50 | −0.42 | ||||
July | −0.28 | −0.45 | −0.32 | ||||
August | −0.50 | −0.59 | −0.45 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarev, E.I.; Ponomareva, T.V.; Prokushkin, A.S. Intraseasonal Dynamics of River Discharge and Burned Forest Areas in Siberia. Water 2019, 11, 1146. https://doi.org/10.3390/w11061146
Ponomarev EI, Ponomareva TV, Prokushkin AS. Intraseasonal Dynamics of River Discharge and Burned Forest Areas in Siberia. Water. 2019; 11(6):1146. https://doi.org/10.3390/w11061146
Chicago/Turabian StylePonomarev, Evgenii I., Tatiana V. Ponomareva, and Anatoly S. Prokushkin. 2019. "Intraseasonal Dynamics of River Discharge and Burned Forest Areas in Siberia" Water 11, no. 6: 1146. https://doi.org/10.3390/w11061146
APA StylePonomarev, E. I., Ponomareva, T. V., & Prokushkin, A. S. (2019). Intraseasonal Dynamics of River Discharge and Burned Forest Areas in Siberia. Water, 11(6), 1146. https://doi.org/10.3390/w11061146