Next Article in Journal
Sensitivity of Potential Groundwater Recharge to Projected Climate Change Scenarios: A Site-Specific Study in the Nebraska Sand Hills, USA
Next Article in Special Issue
Revisiting SWAT as a Saturation-Excess Runoff Model
Previous Article in Journal
Hydrogeochemical Characteristics and Controlling Factors of the Lhasa River under the Influence of Anthropogenic Activities
Previous Article in Special Issue
A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle

Assessment of Climate Change Impact on Future Groundwater-Level Behavior Using SWAT Groundwater-Consumption Function in Geum River Basin of South Korea

1
Graduate School of Civil, Environmental and Plant Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
2
Agricultural and Water Resources Engineering, Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX 79927–5020, USA
3
School of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
*
Author to whom correspondence should be addressed.
Water 2019, 11(5), 949; https://doi.org/10.3390/w11050949
Received: 27 March 2019 / Revised: 3 May 2019 / Accepted: 5 May 2019 / Published: 6 May 2019
  |  
PDF [4288 KB, uploaded 6 May 2019]
  |     |  

Abstract

This study was to evaluate the groundwater-level behavior in Geum River Basin (9645.5 km2) of South Korea with HadGEM3-RA RCP 4.5 and 8.5 climate change scenarios and future groundwater use data using the soil and water assessment tool (SWAT). Before evaluating future groundwater behavior, the SWAT model was calibrated and validated using the daily inflows and storage of two dams (DCD and YDD) in the basin for 11 years (2005–2015), the daily groundwater-level observation data at five locations (JSJS, OCCS, BEMR, CASS, and BYBY), and the daily inflow and storage of three weir locations (SJW, GJW, and BJW) for three years and five months (August 2012 to December 2015). The Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R2) of two dam inflows was 0.55–0.70 and 0.67–0.75. For the inflows of the three weirs, NSE was 0.57–0.77 and R2 was 0.62–0.81. The average R2 value for the groundwater levels of the five locations ranged from 0.53 to 0.61. After verifying the SWAT for hydrologic components, we evaluated the behavior of future groundwater levels by future climate change scenarios and estimated future ground water use by Korean water vision 2020 based on ground water use monitoring data. The future groundwater-level decreased by −13.0, −5.0, and −9.0 cm at three upstream locations (JSJS, OCCS, and BEMR) among the five groundwater-level observation locations and increased by +3.0 and +1.0 cm at two downstream locations (CASS and BYBY). The future groundwater level was directly affected by the groundwater recharge, which was dependent on the seasonal and spatial precipitations in the basin. View Full-Text
Keywords: SWAT; groundwater use; groundwater level; climate change; groundwater consumption SWAT; groundwater use; groundwater level; climate change; groundwater consumption
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lee, J.; Jung, C.; Kim, S.; Kim, S. Assessment of Climate Change Impact on Future Groundwater-Level Behavior Using SWAT Groundwater-Consumption Function in Geum River Basin of South Korea. Water 2019, 11, 949.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top