Integrating Landsat TM/ETM+ and Numerical Modeling to Estimate Water Temperature in the Tigris River under Future Climate and Management Scenarios
Abstract
:1. Introduction
2. The Tigris River Study Area
3. Methodology
3.1. Satellite Data Acquisition
3.2. Estimation of Surface Water Temperature of the Tigris River
3.3. Statistical Algorithms of Tw
4. CE-QUAL-W2 Model
4.1. W2 Model Inputs
4.2. Meteorological Data of the Tigris River Model
5. W2 Model Development and Calibration
5.1. Scenario Development
5.2. Model Management Scenarios
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahi, K.A.; Halihan, T. Changes in the Salinity of the Euphrates River System in Iraq. Reg. Environ. Chang. 2010, 10, 27–35. [Google Scholar] [CrossRef]
- Wells, S.A.; Berger, C.J. Modeling the Response of Dissolved Oxygen to Phosphorus Loading in Lake Spokane. Lake Reserv. Manag. 2016, 32, 270–279. [Google Scholar] [CrossRef]
- Talke, S.A.; De Swart, H.E.; De Jonge, V.N. An Idealized Model and Systematic Process Study of Oxygen Depletion in Highly Turbid Estuaries. Estuaries Coasts 2009, 32, 602–620. [Google Scholar] [CrossRef]
- Jurgelenaite, A.; Kriaučiuniene, J.; Šarauskiene, D. Spatial and Temporal Variation in the Water Temperature of Lithuanian Rivers. Baltica 2012, 25, 65–76. [Google Scholar] [CrossRef]
- Alcântara, E.H.; Stech, J.L.; Lorenzzetti, J.A.; Bonnet, M.P.; Casamitjana, X.; Assireu, A.T.; de Moraes Novo, E.M.L. Remote Sensing of Water Surface Temperature and Heat Flux over a Tropical Hydroelectric Reservoir. Remote Sens. Environ. 2010, 114, 2651–2665. [Google Scholar] [CrossRef]
- Lisi, P.J.; Schindler, D.E.; Bentley, K.T.; Pess, G.R. Geomorphology Association between Geomorphic Attributes of Watersheds, Water Temperature, and Salmon Spawn Timing in Alaskan Streams. Geomorphology 2013, 185, 78–86. [Google Scholar] [CrossRef]
- Preston, B.L. Observed Winter Warming of the Chesapeake Bay Estuary (1949–2002): Implications for Ecosystem Management. Environ. Manag. 2004, 34, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. Global Thermal Pollution of Rivers from Thermoelectric Power Plants. Environ. Res. Lett. 2016, 11, 104011. [Google Scholar] [CrossRef]
- Tan, J.; Cherkauer, K.A. Assessing Stream Temperature Variation in the Paci Fi c Northwest Using Airborne Thermal Infrared Remote Sensing. J. Environ. Manag. 2013, 115, 206–216. [Google Scholar] [CrossRef]
- Langan, S.J.; Johnston, L.; Donaghy, M.J.; Youngson, A.F.; Hay, D.W. Variation in River Water Temperatures in an Upland Stream over a 30-Year Period. Sci. Total Environ. 2001, 265, 195–207. [Google Scholar] [CrossRef]
- Sima, S.; Ahmadalipour, A.; Tajrishy, M. Mapping Surface Temperature in a Hyper-Saline Lake and Investigating the Effect of Temperature Distribution on the Lake Evaporation. Remote Sens. Environ. 2013, 136, 374–385. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS Satellite Data in Monitoring Water Quality Parameters of Chaohu Lake in China. Environ. Monit. Assess. 2009, 148, 255–264. [Google Scholar] [CrossRef]
- Hudson, A.S.; Talke, S.A.; Jay, D.A. Using Satellite Observations to Characterize the Response of Estuarine Turbidity Maxima to External Forcing. Estuaries Coasts 2017, 40, 343–358. [Google Scholar] [CrossRef]
- Moran, M.S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; Gonzalez-Dugo, M.P.; Qi, J.; Clarke, T.R. A Refined Empirical Line Approach for Reflectance Factor Retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82. [Google Scholar] [CrossRef]
- Handcock, R.N.; Gillespie, A.R.; Cherkauer, K.A.; Kay, J.E.; Burges, S.J.; Kampf, S.K. Accuracy and Uncertainty of Thermal-Infrared Remote Sensing of Stream Temperatures at Multiple Spatial Scales. Remote Sens. Environ. 2006, 100, 427–440. [Google Scholar] [CrossRef]
- Boer, T. Assessing the Accuracy of Water Temperature Determination and Monitoring of Inland Surface Waters Using Landsat 7 ETM+ Thermal Infrared Images A Case Study on the Rhine River, North Sea Canal and Hollands Diep. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, January 2014. [Google Scholar]
- Ding, H.; Elmore, A.J. Spatio-Temporal Patterns in Water Surface Temperature from Landsat Time Series Data in the Chesapeake Bay, U.S.A. Remote Sens. Environ. 2015, 168, 335–348. [Google Scholar] [CrossRef]
- Khattab, M.F.O.; Merkel, B.J. Application of Landsat 5 and Landsat 7 Images Data for Water Quality Mapping in Mosul Dam Lake, Northern Iraq. Arab. J. Geosci. 2014, 7, 3557–3573. [Google Scholar] [CrossRef]
- Lamaro, A.A.; Mariñelarena, A.; Torrusio, S.E.; Sala, S.E. Water Surface Temperature Estimation from Landsat 7 ETM+ Thermal Infrared Data Using the Generalized Single-Channel Method: Case Study of Embalse Del Río Tercero (Córdoba, Argentina). Adv. Space Res. 2013, 51, 492–500. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M. Atmospheric Correction of Landsat ETM+ Land Surface Imagery-Part I. Methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2490–2498. [Google Scholar] [CrossRef]
- Ling, F.; Foody, G.M.; Du, H.; Ban, X.; Li, X.; Zhang, Y.; Du, Y. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images. Remote Sens. 2017, 9, 1175. [Google Scholar] [CrossRef]
- Schott, J.R.; Barsi, J.A.; Nordgren, B.L.; Raqueño, N.G.; de Alwis, D. Calibration of Landsat Thermal Data and Application to Water Resource Studies. Remote Sens. Environ. 2001, 78, 108–117. [Google Scholar] [CrossRef]
- Simon, R.N.; Tormos, T.; Danis, P. Retrieving Water Surface Temperature from Archive LANDSAT Thermal Infrared Data: Application of the Mono-Channel Atmospheric Correction Algorithm over Two Freshwater Reservoirs. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 247–250. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Faux, R.N.; McIntosh, B.A.; Poage, N.J.; Norton, D.J. Airborne Thermal Remote Sensing for Water Temperature Assessment in Rivers and Streams. Remote Sens. Environ. 2001, 76, 386–398. [Google Scholar] [CrossRef]
- Talke, S.A.; Horner-Devine, A.R.; Chickadel, C.C.; Jessup, A.T. Turbulent Kinetic Energy and Coherent Structures in a Tidal River. J. Geophys. Res. Ocean. 2013, 118, 6965–6981. [Google Scholar] [CrossRef]
- Reinart, A.; Reinhold, M. Mapping Surface Temperature in Large Lakes with MODIS Data. Remote Sens. Environ. 2008, 112, 603–611. [Google Scholar] [CrossRef]
- Wawrzyniak, V.; Piégay, H.P.; Poirel, A. Longitudinal and Temporal Thermal Patterns of the French Rhône River Using Landsat ETM + Thermal Infrared Images. Aquat. Sci. 2012, 74, 405–414. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Knutsson, S. Toward Prudent Management of Water Resources in Iraq. J. Adv. Sci. Eng. Res. 2011, 1, 53–67. [Google Scholar]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting Chlorophyll, Secchi Disk Depth and Surface Temperature in a Sub-Alpine Lake Using Landsat Imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K. Detection of Surface Temperature from Landsat-7/ETM+. Adv. Space Res. 2003, 32, 2235–2240. [Google Scholar] [CrossRef]
- Wukelic, G.E.; Gibbons, D.E.; Martucci, L.M.; Foote, H.P. Radiometric Calibration of Landsat Thematic Mapper Thermal Band. Remote Sens. Environ. 1989, 28, 339–347. [Google Scholar] [CrossRef]
- Al Murib, M. Hydrodynamic and Water Quality Modeling of the Tigris River System in Iraq Using CE-QUAL-W2. Ph.D. Dissertation, Portland State University, Portland, OR, USA, March 2018. [Google Scholar]
- Adams, E.E.; Wells, S.A. Field measurements on side arms of Lake Anna, Virginia. J. Hydraul. Eng. ASCE 1984, 110, 773–793. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Torgersen, C.E.; Lawler, J.J.; Faux, R.N.; Steel, E.A.; Beechie, T.J.; Ebersole, J.L.; Leibowitz, S.G. Rethinking the Longitudinal Stream Temperature Paradigm: Region-Wide Comparison of Thermal Infrared Imagery Reveals Unexpected Complexity of River Temperatures. Hydrol. Process. 2015, 29, 4719–4737. [Google Scholar] [CrossRef]
- Cole, T.; Wells, S. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.1; October 2017. Available online: https://www.cee.pdx.edu/w2/ (accessed on 27 April 2019).
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. 2007. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf (accessed on 27 April 2019).
- El-Fadel, M.; Bou-Zaid, E. Climate Change and Water Resources in the Middle East: Vulnerability, Soci-Economic Impacts, and Adaptation. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=278514 (accessed on 18 April 2019).
- Zakaria, S.; Al-ansari, N.; Knutsson, S. Historical and Future Climatic Change Scenarios for Temperature and Rainfall for Iraq. J. Civ. Eng. Archit. 2013, 7, 1574–1594. [Google Scholar]
Path/Row 169/35 | Date | JDAY 2009 | Cloud Cover % | Path/Row 170/35 | Date | JDAY 2009 | Cloud Cover % |
---|---|---|---|---|---|---|---|
LE7 | 4 February 2009 | 35 | 3 | LE7 | 11 November 2009 | 42 | 8 |
27 May 2009 | 147 | 6 | 2 May 2009 | 122 | 0 | ||
28 June 2009 | 179 | 0 | 18 May 2009 | 138 | 0 | ||
14 July 2009 | 195 | 0 | 3 June2009 | 154 | 0 | ||
30 July 2009 | 211 | 0 | 5 July 2009 | 186 | 0 | ||
15 August 2009 | 227 | 0 | 28 December 2009 | 362 | 12 | ||
31 August 2009 | 243 | 0 | LT5 | 26 May 2009 | 146 | 1 | |
16 September 2009 | 259 | 14 | 13 July 2009 | 194 | 0 | ||
2 October 2009 | 275 | 0 | 29 July 2009 | 210 | 0 | ||
18 October 2009 | 291 | 0 | 30 August2009 | 242 | 0 | ||
LT5 | 3 May 2009 | 123 | 1 | 15 September 2009 | 258 | 0 | |
19 May 2009 | 139 | 2 | 1 October 2009 | 274 | 0 | ||
4 June2009 | 155 | 0 | 17 October 2009 | 290 | 0 | ||
20 June 2009 | 171 | 5 | |||||
6 July 2009 | 187 | 5 | |||||
22 July 2009 | 203 | 1 | |||||
7 August 2009 | 219 | 1 | |||||
23 August 2009 | 235 | 0 | |||||
8 September 2009 | 251 | 0 | |||||
24 September 2009 | 267 | 5 | |||||
10 October 2009 | 283 | 0 | |||||
26 October 2009 | 299 | 1 | |||||
11 November 2009 | 315 | 0 |
Path/Row 169/36 | Date | JDAY 2009 | Cloud Cover % | Path/Row 169/36 | Date | JDAY 2009 | Cloud Cover % |
---|---|---|---|---|---|---|---|
LE7 | 4 February 2009 | 35 | 3 | LT5 | 3 May 2009 | 123 | 16 |
8 March 2009 | 67 | 4 | 19 May 2009 | 139 | 0 | ||
27 May 2009 | 147 | 0 | 4 June 2009 | 155 | 0 | ||
30 July 2009 | 211 | 2 | 20 June 2009 | 171 | 0 | ||
15 August 2009 | 227 | 0 | 22 July 2009 | 203 | 3 | ||
16 September 2009 | 259 | 4 | 7 August 2009 | 219 | 1 | ||
2 October 2009 | 275 | 0 | 23 August 2009 | 235 | 0 | ||
18 October 2009 | 291 | 0 | 8 September 2009 | 251 | 0 | ||
24 September 2009 | 267 | 0 | |||||
10 October 2009 | 283 | 2 | |||||
26 October 2009 | 299 | 3 | |||||
11 November 2009 | 315 | 0 |
Path/Row 168/37 | Date | JDAY 2009 | Cloud Cover % | Path/Row 169/37 | Date | JDAY 2009 | Cloud Cover % |
---|---|---|---|---|---|---|---|
LE7 | 12 January 2009 | 12 | 14 | LE7 | 19 January 2009 | 19 | 14 |
28 January 009 | 28 | 2 | 4 February 2009 | 35 | 1 | ||
13 February 2009 | 44 | 7 | 20 February 2009 | 51 | 9 | ||
17 March 2009 | 76 | 0 | 8 March 2009 | 67 | 11 | ||
18 April 2009 | 108 | 1 | 27 May 2009 | 147 | 8 | ||
20 May 2009 | 140 | 6 | 14 July 2009 | 195 | 3 | ||
5 June 2009 | 156 | 0 | 30 July 2009 | 211 | 1 | ||
21 June 2009 | 172 | 0 | 15 August 2009 | 227 | 0 | ||
7 July 2009 | 188 | 0 | 16 September 2009 | 259 | 3 | ||
23 July 2009 | 204 | 0 | 2 October 2009 | 275 | 0 | ||
25 September 2009 | 268 | 0 | 18 October 2009 | 291 | 1 | ||
11 October 2009 | 284 | 2 | |||||
10/27 October 2009 | 300 | 4 | |||||
12 November 2009 | 316 | 0 | |||||
14 December 2009 | 348 | 14 |
Statistical Error | Four-Hour Meteorological Input Data | Daily Average Meteorological Input Data | ||
---|---|---|---|---|
Error (°C) | Baeji | Baghdad | Baeji | Baghdad |
ME (°C) | −0.2 | −0.45 | −0.53 | 0.06 |
AME (°C) | 0.93 | 0.97 | 1.52 | 1.04 |
RMSE (°C) | 1.17 | 1.2 | 1.52 | 1.25 |
N | 360 | 360 | 360 | 360 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Murib, M.D.; Wells, S.A.; Talke, S.A. Integrating Landsat TM/ETM+ and Numerical Modeling to Estimate Water Temperature in the Tigris River under Future Climate and Management Scenarios. Water 2019, 11, 892. https://doi.org/10.3390/w11050892
Al-Murib MD, Wells SA, Talke SA. Integrating Landsat TM/ETM+ and Numerical Modeling to Estimate Water Temperature in the Tigris River under Future Climate and Management Scenarios. Water. 2019; 11(5):892. https://doi.org/10.3390/w11050892
Chicago/Turabian StyleAl-Murib, Muhanned D., Scott A. Wells, and Stefan A. Talke. 2019. "Integrating Landsat TM/ETM+ and Numerical Modeling to Estimate Water Temperature in the Tigris River under Future Climate and Management Scenarios" Water 11, no. 5: 892. https://doi.org/10.3390/w11050892