# Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Fluid Flow

#### 2.2. Rigid Body Dynamics in Space

#### 2.3. Coupling Algorithm

## 3. Validation

#### 3.1. Water Entry of a Non-Buoyant Wedge

#### 3.2. Water Entry of a Buoyant Wedge

#### 3.3. Water Entry and Exit of a Buoyant Cylinder

#### 3.3.1. Experimental Setup

^{®}, with an internal volume of $1.5\phantom{\rule{0.166667em}{0ex}}\mathrm{m}\times 1.85\phantom{\rule{0.166667em}{0ex}}\mathrm{m}\times 0.7\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$. The tank is filled with water up to a level of $0.4\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$. Two transparent sides grant optical access to the tank. The specimen, a hollow PVC cylinder filled with polystyrene with a diameter $d=0.16$ m and a breadth $l=0.295$ m, is rigidly connected to a wood sledge that is allowed to move along two vertical aluminum rails. We consider four drop heights of $0.25$ m, $0.50$ m, $0.75$ m and $1.00$ m and two specimen masses, $m={m}_{0}$ and $m={m}_{0}+1$ kg, being ${m}_{0}=2.214$ kg.

^{®}Miro 110 monochromatic high speed camera operating at a frame-rate of 2500 Hz for $m={m}_{0}$ and of 2700 Hz for $m={m}_{0}+1$ kg.

- (i)
- Numerical differentiation of the displacement measurement through central difference approximation;
- (ii)
- Numerical integration of the measured acceleration through the trapezoid rule;
- (iii)
- Least square fitting of the specimen displacement to a second order function and algebraic differentiation.

#### 3.3.2. Numerical Setup

#### 3.3.3. Results and Dicussion

#### 3.4. Roll Motion of a Rectangular Structure

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Campbell, R.; Paterson, E. Fluid–structure interaction analysis of flexible turbomachinery. J. Fluids Struct.
**2011**, 27, 1376–1391. [Google Scholar] [CrossRef] - Küttler, U.; Wall, W.A. Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech.
**2008**, 43, 61–72. [Google Scholar] [CrossRef] - Montessori, A.; Falcucci, G. Lattice Boltzmann Modeling of Complex Flows for Engineering Applications; Morgan & Claypool Publishers: London, UK, 2018. [Google Scholar]
- Faltinsen, O.M. Hydroelastic slamming. J. Mar. Sci. Technol.
**2000**, 5, 49–65. [Google Scholar] [CrossRef] - Wu, M.; Moan, T. Numerical prediction of wave-induced long-term extreme load effects in a flexible high-speed pentamaran. J. Mar. Sci. Technol.
**2006**, 11, 39–51. [Google Scholar] [CrossRef] - Panciroli, R.; Abrate, S.; Minak, G.; Zucchelli, A. Hydroelasticity in water-entry problems: Comparison between experimental and SPH results. Compos. Struct.
**2012**, 94, 532–539. [Google Scholar] [CrossRef] - Abrate, S. Hull Slamming. Appl. Mech. Rev.
**2013**, 64, 060803. [Google Scholar] [CrossRef] - De Rosis, A.; Falcucci, G.; Porfiri, M.; Ubertini, F.; Ubertini, S. Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput. Struct.
**2014**, 138, 24–35. [Google Scholar] [CrossRef] - Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S. Lattice Boltzmann modeling of water entry problems. Int. J. Mod. Phys. C
**2014**, 25, 1441012. [Google Scholar] [CrossRef] - Facci, A.L.; Panciroli, R.; Ubertini, S.; Porfiri, M. Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J. Fluids Struct.
**2015**, 55, 484–500. [Google Scholar] [CrossRef] [Green Version] - Panciroli, R.; Falcucci, G.; Erme, G.; De Santis, E.; Jannelli, E. Fluid-structure interaction during the water entry of flexible cylinders. AIP Conf. Proc.
**2015**, 1648, 570011. [Google Scholar] - Zhao, X.; Gao, Y.; Cao, F.; Wang, X. Numerical modeling of wave interactions with coastal structures by a constrained interpolation profile/immersed boundary method. Int. J. Numer. Methods Fluids
**2016**, 81, 265–283. [Google Scholar] [CrossRef] - De Tullio, M.; Cristallo, A.; Balaras, E.; Verzicco, R. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech.
**2009**, 622, 259–290. [Google Scholar] [CrossRef] - Chen, Z.; Shatara, S.; Tan, X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Trans. Mechatron.
**2010**, 13, 519–529. [Google Scholar] - Aureli, M.; Kopman, V.; Porfiri, M. Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron.
**2010**, 15, 603–614. [Google Scholar] [CrossRef] - Erturk, A.; Delporte, G. Underwater thrust and power generation using flexible piezoelectric composites: An experimental investigation toward self-powered swimmer-sensor platforms. Smart Mater. Struct.
**2011**, 20, 125013. [Google Scholar] [CrossRef] - Rosis, A.D.; Falcucci, G.; Ubertini, S.; Ubertini, F. Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method. J. Fluids Struct.
**2014**, 49, 516–533. [Google Scholar] [CrossRef] - Amirante, D.; Hills, N.; Barnes, C. A moving mesh algorithm for aero-thermo-mechanical modelling in turbomachinery. Int. J. Numer. Methods Fluids
**2012**, 70, 1118–1138. [Google Scholar] [CrossRef] - Falcucci, G.; Aureli, M.; Ubertini, S.; Porfiri, M. Transverse harmonic oscillations of laminae in viscous fluids: A lattice Boltzmann study. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
**2011**, 369, 2456–2466. [Google Scholar] [CrossRef] [PubMed] - Facci, A.L.; Porfiri, M. Nonlinear hydrodynamic damping of sharp-edged cantilevers in viscous fluids undergoing multi-harmonic base excitation. J. Appl. Phys.
**2012**, 112, 124908. [Google Scholar] [CrossRef] - Facci, A.L.; Porfiri, M. Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids. J. Fluids Struct.
**2013**, 38, 205–222. [Google Scholar] [CrossRef] - Brufau-Penella, J.; Puig-Vidal, M.; Giannone, P.; Graziani, S.; Strazzeri, S. Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct.
**2008**, 17, 015009. [Google Scholar] [CrossRef] - Aureli, M.; Prince, C.; Porfiri, M.; Peterson, S.D. Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater. Struct.
**2010**, 19, 015003. [Google Scholar] [CrossRef] - Biscarini, C. Computational fluid dynamics modelling of landslide generated water waves. Landslides
**2010**, 7, 117–124. [Google Scholar] [CrossRef] - Fritz, H.; Hager, W.; Minor, H.E. Near field characteristics of landslide generated impulse waves. J. Waterw. Port Coast. Ocean Eng.
**2004**, 130, 287–302. [Google Scholar] [CrossRef] - Batra, R.C.; Porfiri, M.; Spinello, D. Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct.
**2007**, 16, R23–R31. [Google Scholar] [CrossRef] - Ihara, A.; Watanabe, H. On the flow around flexible plates, oscillating with large amplitude. J. Fluids Struct.
**1994**, 8, 601–619. [Google Scholar] [CrossRef] - Kimber, M.; Garimella, S.V.; Raman, A. Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers. Trans. ASME J. Heat Transf.
**2007**, 129, 1168–1176. [Google Scholar] [CrossRef] - Bidkar, R.A.; Kimber, M.; Raman, A.; Bajaj, A.K.; Garimella, S.V. Nonlinear aerodynamic damping of sharp-edged flexible beams oscillating at low Keulegan-Carpenter numbers. J. Fluid Mech.
**2009**, 634, 269–289. [Google Scholar] [CrossRef] - Hay, A.; Leroyer, A.; Visonneau, M. H-adaptive Navier–Stokes simulations of free-surface flows around moving bodies. J. Mar. Sci. Technol.
**2006**, 11, 1–18. [Google Scholar] [CrossRef] - Carcaterra, A.; Ciappi, E. Prediction of the compressible stage slamming force on rigid and elastic systems impacting on the water surface. Nonlinear Dyn.
**2000**, 21, 193–220. [Google Scholar] [CrossRef] - Seng, S.; Jensen, J.J.; Pedersen, P.T. Numerical prediction of slamming loads. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.
**2012**, 226, 120–134. [Google Scholar] [CrossRef] - Facci, A.L.; Porfiri, M.; Ubertini, S. Three-dimensional water entry of a solid body: A computational study. J. Fluids Struct.
**2016**, 66, 36–53. [Google Scholar] [CrossRef] [Green Version] - Hermundstad, O.A.; Moan, T. Numerical and experimental analysis of bow flare slamming on a Ro–Ro vessel in regular oblique waves. J. Mar. Sci. Technol.
**2005**, 10, 105–122. [Google Scholar] [CrossRef] - Panahi, R. Simulation of water-entry and water-exit problems using a moving mesh algorithm. J. Theor. Appl. Mech.
**2012**, 42, 79–92. [Google Scholar] [CrossRef] - Uddin, E.; Sung, H.J. Simulation of flow-flexible body interactions with large deformation. Int. J. Numer. Methods Fluids
**2012**, 70, 1089–1102. [Google Scholar] [CrossRef] - Zhang, Y.; Pin, F.; Yim, S. A heterogeneous flow model based on DD method for free surface fluid-structure interaction problems. Int. J. Numer. Methods Fluids
**2014**, 74, 292–312. [Google Scholar] [CrossRef] - Eken, A.; Sahin, M. A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems. Int. J. Numer. Methods Fluids
**2016**, 80, 687–714. [Google Scholar] [CrossRef] - Farhat, C.; Lesoinne, M.; Tallec, P.L. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods Appl. Mech. Eng.
**1998**, 157, 95–114. [Google Scholar] [CrossRef] - Jung, K.H.; Chang, K.A.; Jo, H.J. Viscous effect on the roll motion of a rectangular structure. J. Eng. Mech.
**2006**, 132, 190–200. [Google Scholar] [CrossRef] - Chen, Q.; Zang, J.; Dimakopoulos, A.S.; Kelly, D.M.; Williams, C.J. A Cartesian cut cell based two-way strong fluid–solid coupling algorithm for 2D floating bodies. J. Fluids Struct.
**2016**, 62, 252–271. [Google Scholar] [CrossRef] [Green Version] - Cheon, J.S.; Jang, B.S.; Yim, K.H.; Lee, H.D.; Koo, B.Y.; Ju, H. A study on slamming pressure on a flat stiffened plate considering fluid-structure interaction. J. Mar. Sci. Technol.
**2016**, 21, 309–324. [Google Scholar] [CrossRef] - Kassiotis, C. Nonlinear Fluid-Structure Interaction: A Partitioned Approach and Its Application through Component Technology. Ph.D. Thesis, Université Paris-Est, Champs-sur-Marne, France, 2009. [Google Scholar]
- Piperno, S.; Farhat, C. Partitioned procedures for the transient solution of coupled aeroelastic problems—Part II: Energy transfer analysis and three-dimensional applications. Comput. Methods Appl. Mech. Eng.
**2001**, 190, 3147–3170. [Google Scholar] [CrossRef] - Habchi, C.; Russeil, S.; Bougeard, D.; Harion, J.L.; Lemenand, T.; Ghanem, A.; Della Valle, D.; Peerhossaini, H. Partitioned solver for strongly coupled fluid–structure interaction. Comput. Fluids
**2013**, 71, 306–319. [Google Scholar] [CrossRef] [Green Version] - Causin, P.; Gerbeau, J.F.; Nobile, F. Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng.
**2005**, 194, 4506–4527. [Google Scholar] [CrossRef] [Green Version] - Förster, C.; Wall, W.A.; Ramm, E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng.
**2007**, 196, 1278–1293. [Google Scholar] [CrossRef] - Wood, C.; Gil, A.; Hassan, O.; Bonet, J. Partitioned block-Gauss–Seidel coupling for dynamic fluid–structure interaction. Comput. Struct.
**2010**, 88, 1367–1382. [Google Scholar] [CrossRef] - Ángel Fernández, M.; Moubachir, M. A Newton method using exact jacobians for solving fluid-structure coupling. Comput. Struct.
**2005**, 83, 127–142. [Google Scholar] [CrossRef] - Walhorn, E.; Kölke, A.; Hübner, B.; Dinkler, D. Fluid-structure coupling within a monolithic model involving free surface flows. Comput. Struct.
**2005**, 83, 2100–2111. [Google Scholar] [CrossRef] - Degroote, J.; Bathe, K.J.; Vierendeels, J. Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput. Struct.
**2009**, 87, 793–801. [Google Scholar] [CrossRef] [Green Version] - Scruggs, J.; Jacob, P. Harvesting ocean wave energy. Science
**2009**, 323, 1176–1178. [Google Scholar] [CrossRef] - Wall, W.A.; Genkinger, S.; Ramm, E. A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput. Fluids
**2007**, 36, 169–183. [Google Scholar] [CrossRef] - Antoci, C.; Gallati, M.; Sibilla, S. Numerical simulation of fluid–structure interaction by SPH. Comput. Struct.
**2007**, 85, 879–890. [Google Scholar] [CrossRef] - Potapov, S.; Maurel, B.; Combescure, A.; Fabis, J. Modeling accidental-type fluid–structure interaction problems with the SPH method. Comput. Struct.
**2009**, 87, 721–734. [Google Scholar] [CrossRef] - Di Francesco, S.; Biscarini, C.; Manciola, P. Numerical simulation of water free-surface flows through a front-tracking lattice Boltzmann approach. J. Hydroinform.
**2015**, 17, 1–6. [Google Scholar] [CrossRef] - Hu, C.; Kashiwagi, M. A CIP-based method for numerical simulations of violent free-surface flows. J. Mar. Sci. Technol.
**2004**, 9, 143–157. [Google Scholar] [CrossRef] - Takizawa, K.; Yabe, T.; Tsugawa, Y.; Tezduyar, T.E.; Mizoe, H. Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids. Comput. Mech.
**2007**, 40, 167–183. [Google Scholar] [CrossRef] - Aly, A.M.; Asai, M.; Sonoda, Y. Simulation of free falling rigid body into water by a stabilized incompressible SPH method. Ocean Syst. Eng.
**2011**, 1, 207–222. [Google Scholar] [CrossRef] - Vandamme, J.; Zou, Q.; Reeve, D.E. Modeling floating object entry and exit using smoothed particle hydrodynamics. J. Waterw. Port Coast. Ocean Eng.
**2011**, 137, 213–224. [Google Scholar] [CrossRef] - Faltinsen, O. Sea Loads on Ships and Offshore Structures; Cambridge University Press: Cambridge, UK, 1993; Volume 1. [Google Scholar]
- Korobkin, A. Water impact problems in ship hydrodynamics. In Advances in Marine Hydrodynamics; Computational Mechanics Publications: Norwich, UK, 1996; pp. 323–371. [Google Scholar]
- Carrica, P.; Huang, J.; Noack, R.; Kaushik, D.; Smith, B.; Stern, F. Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant. Comput. Fluids
**2010**, 39, 1095–1111. [Google Scholar] [CrossRef] - Seddon, C.; Moatamedi, M. Review of water entry with applications to aerospace structures. Int. J. Impact Eng.
**2006**, 32, 1045–1067. [Google Scholar] [CrossRef] - Extend Project. 2016. Available online: http://www.extend-project.de/ (accessed on 19 May 2017).
- Greenshields, C.J. OpenFOAM User’s Guide, 2.4.0 ed.; OpenFOAM Foundation Ltd.: London, UK, 2015. [Google Scholar]
- Rider, W.J.; Kothe, D.B. Reconstructing Volume Tracking. J. Comput. Phys.
**1998**, 141, 112–152. [Google Scholar] [CrossRef] [Green Version] - Scardovelli, R.; Zaleski, S. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech.
**1999**, 31, 567–603. [Google Scholar] [CrossRef] - Rusche, H. Computational Fluid Dynamiccs of Dispersed Two-Phase Flows at High Phase Fractions. Ph.D. Thesis, University of London, London, UK, 2002. [Google Scholar]
- Cavalagli, N.; Biscarini, C.; Facci, A.; Ubertini, F.; Ubertini, S. Experimental and numerical analysis of energy dissipation in a sloshing absorber. J. Fluids Struct.
**2017**, 68, 466–481. [Google Scholar] [CrossRef] - Ferziger, J.H.; Periç, M. Computational Methods for Fluid Dynamics, 3rd rev. ed.; Springer: Berlin, Germany; Tokyo, Japan, 2002. [Google Scholar]
- Jasak, H. Error Analysis and Estimation for Finite Volume Method with Applications to Fluid Flow. Ph.D. Thesis, University of London, London, UK, 1996. [Google Scholar]
- Jasak, H. Dynamic Mesh Handling in OpenFOAM. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2008. [Google Scholar]
- Jasak, H.; Tukovic, Z. Automatic Mesh Motion for the Unstructured Finite Volume Method. Trans. FAMENA
**2007**, 30, 1–18. [Google Scholar] - Kassiotis, C. Which Strategy to Move the Mesh in the Computational Fluid Dynamic Code OpenFOAM; Technical Report; WiRe, LMT-Cachan: Braunschweig, Germany, 2008; Available online: http://perso.crans.org/kassiotis/openfoam/movingmesh.pdf (accessed on 19 May 2017).
- Haug, E.J. Computer Aided Kinematics and Dynamics of Mechanical Systems; Allyn and Bacon: Boston, MA, USA, 1989; Volume 1. [Google Scholar]
- Sherif, K.; Nachbagauer, K.; Steiner, W. On the rotational equations of motion in rigid body dynamics when using Euler parameters. Nonlinear Dyn.
**2015**, 81, 343–352. [Google Scholar] [CrossRef] [Green Version] - Zhao, R.; Faltinsen, O.; Aarsnes, J. Water entry of arbitrary two-dimensional sections with and without flow separation. In Proceedings of the 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 24–28 June 1996; The National Academies Press: Washington, DC, USA, 1996; pp. 408–423. [Google Scholar]
- Panciroli, R.; Shams, A.; Porfiri, M. Experiments on the water entry of curved wedges: High speed imaging and particle image velocimetry. Ocean Eng.
**2015**, 94, 213–222. [Google Scholar] [CrossRef] - Jalalisendi, M.; Osma, S.J.; Porfiri, M. Three-dimensional water entry of a solid body: A particle image velocimetry study. J. Fluids Struct.
**2015**, 59, 85–102. [Google Scholar] [CrossRef] [Green Version] - Russo, S.; Biscarini, C.; Facci, A.L.; Falcucci, G.; Jannelli, E.; Ubertini, S. Experimental assessment of buoyant cylinder impacts through high-speed image acquisition. J. Mar. Sci. Technol.
**2017**, 23, 67–80. [Google Scholar] [CrossRef] - NationalInstruments. Version 2014. Available online: www.ni.com/labview (accessed on 19 May 2017).
- Facci, A.L.; Ubertini, S. Numerical assessment of similitude parameters and dimensional analysis for water entry problems. Math. Probl. Eng.
**2015**, 2015, 324961. [Google Scholar] [CrossRef] - Panciroli, R.; Biscarini, C.; Falcucci, G.; Jannelli, E.; Ubertini, S. Live monitoring of the distributed strain field in impulsive events through fiber Bragg gratings. J. Fluids Struct.
**2016**, 61, 60–75. [Google Scholar] [CrossRef] - Russo, S.; Krastev, V.; Jannelli, E.; Falcucci, G. Design and optimization of an experimental test bench for the study of impulsive fluid-structure interactions. AIP Conf. Proc.
**2016**, 1738, 270020. [Google Scholar] - Goggins, J.; Finnegan, W. Numerical simulation of linear water waves and wave-structure interaction. Ocean Eng.
**2012**, 43, 23–31. [Google Scholar] - Xing-Kaeding, Y.; Jensen, G.; Technical University of Hamburg-Harburg; Hadžić, I.; Perić, M.; CD Adapco Group. Simulation of flow-induced ship motions in waves using a RANSE method. Ship Technol. Res.
**2004**, 51, 56–68. [Google Scholar] [CrossRef] - Hadžić, I.; Hennig, J.; Perić, M.; Xing-Kaeding, Y. Computation of flow-induced motion of floating bodies. Appl. Math. Model.
**2005**, 29, 1196–1210. [Google Scholar] [CrossRef] - Yan, S.; Ma, Q. Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method. J. Comput. Phys.
**2007**, 221, 666–692. [Google Scholar] [CrossRef] [Green Version] - Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998; Volume 2. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng.
**1974**, 3, 269–289. [Google Scholar] [CrossRef]

**Figure 3.**Comparison between numerical and experimental results for the specimen velocity during the water impact of a rigid wedge. Experimental data are retrieved from Reference [78].

**Figure 4.**Impact velocity of the specimen as a function of the drop height. Experimental data retrieved from Reference [79].

**Figure 5.**Displacement of the specimen center of mass. Comparison between CFD and experiments [79] for different h: (

**a**) $h=0.25$ m; (

**b**) $h=0.50$ m; (

**c**) $h=0.75$ m; (

**d**) $h=1.00$ m.

**Figure 6.**Evolution of the free surface during water impact for $h=0.5$ m. CFD results for: (

**a**) $t=0$ ms; (

**b**) $t=6$ ms; (

**c**) $t=12$ ms; (

**d**) $t=18$ ms; (

**e**) $t=24$ ms.

**Figure 7.**Impact velocity of the specimen as a function of the drop height and of the mass of the impacting cylinder.

**Figure 8.**Displacement of the specimen center of mass. Comparison between CFD and experiments for different h and m: (

**a**) $h=0.25$ m and $m={m}_{0}$; (

**b**) $h=0.5$ m and $m={m}_{0}$; (

**c**) $h=0.75$ m and $m={m}_{0}$; (

**d**) $h=1.00$ m and $m={m}_{0}$; (

**e**) $h=0.25$ m and $m={m}_{0}+1$ kg; (

**f**) $h=0.5$ m and $m={m}_{0}+1$ kg; (

**g**) $h=0.75$ m and $m={m}_{0}+1$ kg; (

**h**) $h=1.00$ m and $m={m}_{0}+1$ kg.

**Figure 9.**Evolution of the free surface for $m={m}_{0}$ and $h=0.5$ m. Comparison between CFD and experiments for different times after water impact: (

**a**) $t=0$ S; (

**b**) $t=0.08$ s; (

**c**) $t=0.16$ s; (

**d**) $t=0.24$ s; (

**e**) $t=0.32$ (s).

**Figure 10.**Convergence history for $h=0.5$ m and $m={m}_{0}$. Note that only 25 time-steps are represented for clarity. Each mark represents a FSI subcycle.

**Figure 11.**Rotation of the specimen about its center of mass. Comparison between CFD and experiments from Reference [40].

**Figure 12.**Representation of the flow field in the vicinity of the oscillating box for different times. For clarity, vectors are represented only in water. (

**a**) $t=0.08$ s, (

**b**) $t=0.8$ s, (

**c**) $t=0.16$ s, (

**d**) $t=0.24$ s and (

**e**) $t=0.32$ s.

**Table 1.**Relative average error evaluated comparing ${\delta}_{\mathrm{CFD}}$ and ${\delta}_{\mathrm{EXP}}$.

h [m] | $0.25$ | $0.50$ | $0.75$ | $1.00$ |

${\epsilon}_{\delta}$ [%] | $2.81$ | $2.24$ | $2.68$ | $3.47$ |

**Table 2.**Percent error on the displacement of the center of mass of the buoyant cylinder as a function of h and m.

$\mathit{m}={\mathit{m}}_{0}$ | $\mathit{m}={\mathit{m}}_{0}$ + 1 kg | |
---|---|---|

$h=0.25$ m | $9.93\%$ | $7.33\%$ |

$h=0.50$ m | $9.82\%$ | $6.32\%$ |

$h=0.75$ m | $10.0\%$ | $9.03\%$ |

$h=1.00$ m | $8.93\%$ | $10.8\%$ |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Facci, A.L.; Falcucci, G.; Agresta, A.; Biscarini, C.; Jannelli, E.; Ubertini, S.
Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation. *Water* **2019**, *11*, 1048.
https://doi.org/10.3390/w11051048

**AMA Style**

Facci AL, Falcucci G, Agresta A, Biscarini C, Jannelli E, Ubertini S.
Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation. *Water*. 2019; 11(5):1048.
https://doi.org/10.3390/w11051048

**Chicago/Turabian Style**

Facci, Andrea Luigi, Giacomo Falcucci, Antonio Agresta, Chiara Biscarini, Elio Jannelli, and Stefano Ubertini.
2019. "Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation" *Water* 11, no. 5: 1048.
https://doi.org/10.3390/w11051048