Correction: Rasheduzzaman, M., et al. Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water 2019, 11, 1850
- Thirteenth sentence (lines 13–15)For N. fowleri, based on the DALY approach, critical concentrations were 0.000030 N. fowleri/L for swimming and 0.00000060 N. fowleri/L for neti pot™ use scenario.
- Seventeenth sentence (lines 17–18)For N. fowleri, the 10−4 annual risk target approach resulted in 0.022 N. fowleri/L and the DALY approach resulted in 0.00000064 N. fowleri/L for the neti pot™ scenario.
- 2.1 Risk Characterization, Equation (2) descriptionswhere, DW is the disability weight, LL is the average duration of the case until death (years) and LD is years lived with infection/illness for non-fatal cases.
- 3.1 Dose-Response Model, first paragraph (lines 1–3)The details of the goodness of fit (i.e., deviance and combined AIC values) for various dose–response models for N. fowleri are shown in Table 4.
- Table 4Third column heading “MLE Estimate” should be changed to “Deviance”.
- 3.1 Dose–Response Model, second paragraph (lines 2–5)The maximum likelihood estimates for beta-Poisson model parameters alpha (α) and N50 were found to be 1.59 and 156, respectively, from 10,000 bootstrap iterations. The 95% confidence interval for alpha (α) was (0.93, 72) and the 95% confidence interval for N50 was (92, 254).
- 3.2 Risk Characterization, first paragraph (lines 4–6)For P. aeruginosa, the risk of illness per event calculated based on DALY was 2.81 × 10−9, which was two orders of magnitude lower than the per event risk of illness based on the annual risk metric (2.74 × 10−7).
- 3.2 Risk Characterization, second paragraph (lines 1–5)For N. fowleri, the risk of death for neti pot™ uses per event calculated based on DALYs was 4.77 × 10−10, which was five orders of magnitude lower than the per event risk of death calculated based on annual risk metric (1.67 × 10−5). Similarly, for N. fowleri exposure during swimming, DALY and annual risk based per event risks followed the same pattern as neti pot™ exposure, i.e., a five orders of magnitude difference in the risk of death.
- 3.3 Concentrations, second paragraph (lines 2–4)The highest critical concentration for N. fowleri was obtained for the swimming scenario using the annual risk metric (mean concertation 1.4 N. fowleri/L with a 95% confidence interval of (0.29, 4.0)).
- 3.3 Concentrations, third paragraph (lines 1–3)Similarly, the concentration for the neti pot™ scenario was found to be 0.021 N. fowleri/L with a 95% confidence interval of (0.010, 0.034) for the annual risk approach. Based on the DALY approach, limits of concentrations were 0.000030 N. fowleri/L for swimming and 0.00000060 N. fowleri/L for neti pot™ use scenario.
- 3.3 Concentrations, fourth paragraph (lines 2–4)Considering the hot water scenario, the annual risk approach resulted in 0.022 N. fowleri/L, and the DALY approach resulted in 0.00000064 N. fowleri/L for the neti pot™ scenario (Scenario 5).
- Fifth paragraph (lines 3–5)In general, the tolerable critical concentrations of N. fowleri are much lower compared to those for P. aeruginosa except for the swimming scenario with the annual risk metric which is still more than an order of magnitude below the P. aeruginosa values.
- Fifth paragraph (lines 9–14)The tolerable mean critical concentration of N. fowleri for the swimming scenario with the annual risk metric has a mean concentration 1.4 CFU/L, with a range from 0.29 to 4.0 CFU/L. Given that the end response is death with a 100% percent mortality rate, it may be wise to pick a lower range of critical concentration (0.29 CFU/L) for developing standards, and the same can be applied for developing standards for other scenarios related to N. fowleri.
- Fifth paragraph (lines 15–17)Considering 50 cells of N. fowleri and 200 L as a volume of water sample to be filtered, the detection limit of N. fowleri would be 0.25 N. fowleri/L which is also aligned with our calculated boundary concentration of N. fowleri using the annual risk metric.
- Sixth paragraph (lines 1–2)Higher tolerable concentration standard can be set for using hot plumbing water for contact lenses exposure scenarios for P. aeruginosa but not for exposure scenarios for N. fowleri.
References
- Rasheduzzaman, M.; Singh, R.; Haas, C.N.; Tolofari, D.; Yassaghi, H.; Hamilton, K.A.; Yang, Z.; Gurian, P.L. Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water 2019, 11, 1850. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Value | Distribution | Source |
---|---|---|---|---|
P. aeruginosa | ||||
alpha | 2.5% = 0.115; 5% = 0.124; 95% = 0.386 | Gamma | [49] | |
N50 | 2.5% = 4730; 5% = 6010; 95% = 70,500 | Gamma | [49] | |
Contact (Drop*) | mL/use | Likeliest = 0.05; Min = 0.01; Max = 0.15 | Triangular | Assumption |
Contact (E.M.Φ) | mL/use | Likeliest = 0.062; Min = 0.052; Max = 0.07 | Triangular | Measured by this study |
N. fowleri | ||||
alpha | 2.5% = 0.84; 5% = 0.93; 95% = 72 | Gamma | Fit by this study | |
N50 | 2.5% = 82; 5% = 92; 95% = 254 | Gamma | ||
Contact (Swimming) | mL/use | Likeliest = 1; Min = 0.1; Max = 10 | Triangular | Assumption |
Contact (Neti Pot™) | mL/use | Likeliest = 180; Min = 120; Max = 240 | Triangular | [48] |
Approach | Risk of Illness/Death | P. aeruginosa | N. fowleri | |
---|---|---|---|---|
Neti Pot™ | Swimming | |||
DALYs | Annual | 1.03 × 10−6 | 2.86 × 10−9 | 2.45 × 10−9 |
Per Event | 2.81 × 10−9 | 4.77 × 10−10 | 3.50 × 10−10 | |
Annual Risk | Annual | 1.00 × 10−4 | 1.00 × 10−4 | 1.00 × 10−4 |
Per Event | 2.74 × 10−7 | 1.67 × 10−5 | 1.43 × 10−5 |
Risk Metric | P. aeruginosa Conc. (CFU/L) (95% CI) | N. fowleri Conc. (N. fowleri/L) (95% CI) | Heat Inactivation Conc. | ||||
---|---|---|---|---|---|---|---|
P. aeruginosa (CFU/L) | N. fowleri (N. fowleri/L) | ||||||
Contact lens (Drop) (Scenario 1a) | Contact lens (E.M.) (Scenario 1b) | Neti Pot™ (Scenario 2) | Swimming (Scenario 3) | Drop (Scenario 4a) | E.M. (Scenario 4b) | Neti Pot™ (Scenario 5) | |
DALY | 0.33 (0.02–1.8) | 0.30 (0.02–0.99) | 0.00000060 (0.00000030–0.0000010) | 0.000030 (0.000010–0.00010) | 0.60 | 0.55 | 0.00000064 |
Annual Risk | 33 (2.0–118) | 30 (2.3–100) | 0.021 (0.010–0.034) | 1.4 (0.29–4.0) | 61 | 55 | 0.022 |
Parameter | MLE | Percentiles | |||||
---|---|---|---|---|---|---|---|
0.5% | 2.5% | 5% | 95% | 97.5% | 99.5% | ||
Alpha | 1.59 | 0.72 | 0.84 | 0.93 | 72 | 1175 | 12946 |
N50 | 156 | 63 | 82 | 92 | 254 | 276 | 322 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasheduzzaman, M.; Singh, R.; Haas, C.N.; Tolofari, D.; Yassaghi, H.; Hamilton, K.A.; Yang, Z.; Gurian, P.L. Correction: Rasheduzzaman, M., et al. Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water 2019, 11, 1850. Water 2019, 11, 2523. https://doi.org/10.3390/w11122523
Rasheduzzaman M, Singh R, Haas CN, Tolofari D, Yassaghi H, Hamilton KA, Yang Z, Gurian PL. Correction: Rasheduzzaman, M., et al. Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water 2019, 11, 1850. Water. 2019; 11(12):2523. https://doi.org/10.3390/w11122523
Chicago/Turabian StyleRasheduzzaman, Md, Rajveer Singh, Charles N. Haas, Dienye Tolofari, Hamed Yassaghi, Kerry A. Hamilton, Zhao Yang, and Patrick L. Gurian. 2019. "Correction: Rasheduzzaman, M., et al. Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water 2019, 11, 1850" Water 11, no. 12: 2523. https://doi.org/10.3390/w11122523
APA StyleRasheduzzaman, M., Singh, R., Haas, C. N., Tolofari, D., Yassaghi, H., Hamilton, K. A., Yang, Z., & Gurian, P. L. (2019). Correction: Rasheduzzaman, M., et al. Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water 2019, 11, 1850. Water, 11(12), 2523. https://doi.org/10.3390/w11122523