Irrigation Canal System Delivery Scheduling Based on a Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model of Canal System Operation Scheduling Optimization
2.2. Model Solution Algorithm Based on PSO
2.2.1. The PSO Algorithm
2.2.2. Coding Design
2.2.3. Fitness Function Design
3. Applications
3.1. Project Cases
3.2. Results from the PSO Algorithm and Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2015 Revisions; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Toma, P.; Massari, S.; Miglietta, P.P. Natural resource use efficiency and economic productivity. In Life Cycle Approaches to Sustainable Regional Development; Massari, S., Sonnemann, G., Balkau, F., Eds.; Springer: New York, NY, USA, 2016; pp. 143–148. [Google Scholar]
- Miglietta, P.P.; Morrone, D. Managing Water Sustainability: Virtual Water Flows and Economic Water Productivity Assessment of the Wine Trade between Italy and the Balkans. Sustainability 2018, 10, 543. [Google Scholar] [CrossRef]
- Leo, F.D.; Miglietta, P.P.; Massari, S. Water sustainability assessment of Italian vineyards: doc vs. generic wines. In Proceedings of the Specialized Conference of the EuroMed Academy of Business—Contemporary Trends and Perspectives in Wine and Agrifood Management, Lecce, Italy, 16–17 January 2015; pp. 16–17. [Google Scholar]
- Miglietta, P.P.; Morrone, D.; Lamastra, L. Water footprint and economic water productivity of Italian wines with appellation of origin: Managing sustainability through an integrated approach. Sci. Total Environ. 2018, 633, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Bowmer, K.H.; Meyer, W.S. Irrigation agriculture: Sustainability through holistic approaches to water use and innovation. In Drinking Water and Water Management: New Research; Giannino, M., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2014; Chapter 7; pp. 181–221. [Google Scholar]
- Das, B.; Singh, A.; Panda, S.N.; Yasuda, H. Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy 2015, 42, 527–537. [Google Scholar] [CrossRef]
- Faures, J.-M.; Svendsen, M.; Turral, H. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; International Water Management Institute: Colombo, Sri Lanka, 2007; p. 354. [Google Scholar]
- Barnes, J.; Wardlaw, R. Optimal allocation of irrigation water supplies in real time. J. Irrig. Drain. Eng. 1999, 125, 345–354. [Google Scholar]
- Li, Y.P.; Huang, G.H.; Nie, S.L.; Chen, X.A. robust modeling approach for regional water management under multiple uncertainties. Agric. Water Manag. 2011, 98, 1577–1588. [Google Scholar] [CrossRef]
- Sunantara, J.D.; RamíRez, J.A. Optimal stochastic multicrop seasonal and intraseasonal irrigation control. J. Water Resour. Plan. Manag. 1997, 123, 39–48. [Google Scholar] [CrossRef]
- Carvallo, H.O.; Holzapfel, E.A.; Lopez, M.A.; Marino, M.A. Irrigated Cropping Optimization. J. Irrig. Drain. Eng. 1998, 124, 67–72. [Google Scholar] [CrossRef]
- Garg, N.K.; Ali, A. Two-level optimization model for Lower Indus Basin. Agric. Water Manag. 1998, 36, 1–21. [Google Scholar] [CrossRef]
- Haouari, M.; Azaiez, M.N. Optimal cropping patterns under water deficits. Eur. J. Oper. Res. 2001, 130, 133–146. [Google Scholar] [CrossRef]
- Paul, S.; Panda, S.N.; Kumar, D.N. Optimal irrigation allocation: A multilevel approach. J. Irrig. Drain. Eng. 2000, 126, 149–156. [Google Scholar] [CrossRef]
- Kuo, S.F.; Liu, C.W.; Chen, S.K. Comparative study of optimization techniques for irrigation project planning. Jawra J. Am. Water Resour. Assoc. 2010, 39, 59–73. [Google Scholar] [CrossRef]
- Yang, C.C.; Chang, L.C.; Chen, C.S.; Yeh, M.S. Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming. Water Resour. Manag. 2009, 23, 417–437. [Google Scholar] [CrossRef]
- Reca, J.; Roldán, J.; Alcaide, M.; López, R.; Camacho, E. Optimisation model for water allocation in deficit irrigation systems: I. Description of the model. Agric. Water Manag. 2001, 48, 103–116. [Google Scholar] [CrossRef]
- Singh, A. Optimal allocation of resources for the maximization of net agricultural return. J. Irrig. Drain. Eng. 2012, 138, 830–836. [Google Scholar] [CrossRef]
- Agrawal, A.; Sakthivadivel, R.; Ambast, S.K. Water management decisions on small farms under scarce canal water supply: A case study from NW India. Agric. Water Manag. 2005, 77, 180–195. [Google Scholar]
- Suryavanshi, A.R.; Reddy, J.M. Optimal operation schedule of irrigation distribution systems. Agric. Water Manag. 1986, 11, 23–30. [Google Scholar] [CrossRef]
- Wang, Z.; Reddy, J.M.; Feyen, J. Improved 0–1 programming model for optimal flow scheduling in irrigation canals. Irrig. Drain. Syst. 1995, 9, 105–116. [Google Scholar] [CrossRef]
- Anwar, A.A.; Clarke, D. Irrigation scheduling using mixed-integer linear programming. J. Irrig. Drain. Eng. 2001, 127, 63–69. [Google Scholar] [CrossRef]
- Monem, M.J.; Namdarian, R. Application of simulated annealing (SA) techniques for optimal water distribution in irrigation canals. Irrig. Drain. 2010, 54, 365–373. [Google Scholar] [CrossRef]
- Reddy, J.M.; Wilamowski, B.; Cassel-Sharmasarkar, F. Optimal scheduling of irrigation for lateral canals. ICID J. 1999, 48, 1–12. [Google Scholar]
- Wardlaw, R.; Bhaktikul, K. Comparison of genetic algorithm and linear programming approaches for lateral canal scheduling. J. Irrig. Drain. Eng. 2004, 130, 311–317. [Google Scholar] [CrossRef]
- Mathur, Y.P.; Sharma, G.; Pawde, A.W. Optimal operation scheduling of irrigation canals using genetic algorithm. Int. J. Recent Trends Eng. 2013, 1, 11–15. [Google Scholar]
- Haq, Z.U.; Anwar, A.A.; Clarke, D. Evaluation of a genetic algorithm for the irrigation scheduling problem. J. Irrig. Drain. Eng. 2008, 134, 737–744. [Google Scholar] [CrossRef]
- Brown, P.D.; Cochrane, T.A.; Krom, T.D. Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing. Agric. Water Manag. 2010, 97, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.C.H.; Maier, H.R.; Dandy, G.C.; Ascough, J.C. Framework for computationally efficient optimal crop and water allocation using ant colony optimization. Environ. Model. Softw. 2016, 76, 37–53. [Google Scholar] [CrossRef]
- Tian, D.; Shi, Z. Mpso: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49–68. [Google Scholar] [CrossRef]
- Lin, Y.H. The simulation of east-bound transoceanic voyages according to ocean-current sailing based on particle swarm optimization in the weather routing system. Mar. Struct. 2018, 59, 219–236. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Wegley, C.; Eusuff, M.; Lansey, K. Determining Pump Operations using Particle Swarm Optimization. Jt. Conf. Water Resour. Eng. Water Resour. Plan. Manag. 2015, 122, 1–6. [Google Scholar]
- Coelho, J.P.; Oliveira, P.B.D.M.; Cunha, J.B. Greenhouse air temperature predictive control using the particle swarm optimisation algorithm. Comput. Electron. Agric. 2005, 49, 330–344. [Google Scholar] [CrossRef]
- Matott, L.S.; Rabideau, A.J.; Craig, J.R. Pump-and-treat optimization using analytic element method flow models. Adv. Water Resour. 2006, 29, 760–775. [Google Scholar] [CrossRef]
- Afshar, M.H.; Rajabpour, R. Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems. Irrig. Drain. 2010, 58, 321–331. [Google Scholar] [CrossRef]
- Pawde, A.W.; Mathur, Y.P.; Kumar, R. Optimal water scheduling in irrigation canal network using particle swarm optimization. Irrig. Drain. 2013, 62, 135–144. [Google Scholar] [CrossRef]
- Davijani, M.H.; Banihabib, M.E.; Anvar, A.N.; Hashemi, S.R. Multi-objective optimization model for the allocation of water resources in arid regions based on the maximization of socioeconomic efficiency. Water Resour. Manag. 2016, 30, 927–946. [Google Scholar] [CrossRef]
- Reddy, M.J.; Kumar, D.N. Optimal reservoir operation for irrigation of multiple crops using elitist-mutated particle swarm optimization. Int. Assoc. Sci. Hydrol. Bull. 2007, 52, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, F.; Safavi, H.R.; Mirchi, A.; Madani, K. f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management. J. Hydro-Environ. Res. 2017, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kostiakov, A.H. Soil Improvement Schematic; China Building Industry Press: Beijing, China, 1965. [Google Scholar]
- Scott, A.H. CIGR Handbook of Agricultural Engineering, Volume I Land and Water Engineering, Chapter 5 Irrigation and Drainage; Forgotten Books: London, UK, 2017. [Google Scholar]
j | qb | Lm | Lj | Wj | j | qb | Lm | Lj | Wj |
---|---|---|---|---|---|---|---|---|---|
(m3/s) | (km) | (km) | 103 (m3) | (m3/s) | (km) | (km) | 103 (m3) | ||
The system of branch canal No. 11 of north canal in Fengjiashan irrigation district | |||||||||
1 | 0.06 | 0.17 | 0.68 | 28.64 | 13 | 0.05 | 3.24 | 0.54 | 28.60 |
2 | 0.03 | 0.23 | 0.65 | 9.38 | 14 | 0.16 | 3.96 | 2.75 | 115.55 |
3 | 0.18 | 0.75 | 0.71 | 57.53 | 15 | 0.03 | 3.96 | 0.61 | 12.09 |
4 | 0.15 | 0.75 | 0.87 | 33.68 | 16 | 0.16 | 4.62 | 2.53 | 126.91 |
5 | 0.05 | 1.38 | 0.40 | 17.78 | 17 | 0.3 | 5.37 | 3.20 | 174.80 |
6 | 0.15 | 1.76 | 1.13 | 53.92 | 18 | 0.12 | 5.91 | 1.61 | 40.79 |
7 | 0.08 | 1.76 | 0.64 | 15.80 | 19 | 0.17 | 6.63 | 2.63 | 66.41 |
8 | 0.12 | 2.33 | 1.19 | 52.24 | 20 | 0.05 | 7.34 | 1.09 | 26.96 |
9 | 0.04 | 2.33 | 1.11 | 30.76 | 21 | 0.03 | 7.37 | 0.26 | 3.46 |
10 | 0.08 | 2.84 | 0.96 | 17.28 | 22 | 0.03 | 2.01 | 0.15 | 13.33 |
11 | 0.05 | 2.84 | 0.60 | 17.18 | 23 | 0.08 | 5.91 | 0.43 | 16.89 |
12 | 0.12 | 3.24 | 2.39 | 73.58 | 24 | 0.03 | 8.25 | 0.18 | 3.16 |
The system of west main canal in Shitouhe river irrigation district | |||||||||
1 | 0.20 | 0.224 | 1.219 | 28.64 | 8 | 1.04 | 3.541 | 1.978 | 28.60 |
2 | 0.15 | 0.224 | 0.684 | 9.38 | 9 | 0.26 | 4.455 | 1.263 | 115.55 |
3 | 0.35 | 0.903 | 1.351 | 57.53 | 10 | 0.28 | 4.455 | 1.542 | 12.09 |
4 | 0.30 | 0.903 | 0.567 | 33.68 | 11 | 0.25 | 5.213 | 1.478 | 126.91 |
5 | 0.40 | 1.548 | 1.781 | 17.78 | 12 | 0.22 | 5.213 | 1.335 | 174.80 |
6 | 0.20 | 2.405 | 1.768 | 53.92 | 13 | 0.85 | 5.861 | 3.662 | 40.79 |
7 | 0.20 | 2.92 | 1.936 | 73.58 | 14 | 1.00 | 5.861 | 6.831 | 3.16 |
No. of Computation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Average Value | Actual Process |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The system of branch canal No. 11 of north canal in Fengjiashan irrigation district | |||||||||||||||||
Tmax | 21 | 21 | 22 | 23 | 22 | 23 | 24 | 22 | 21 | 22 | 24 | 21 | 21 | 21 | 24 | 22 | 33 |
R1 (%) | 5.41 | 5.19 | 5.12 | 5.54 | 5.12 | 5.10 | 5.76 | 5.53 | 5.00 | 5.59 | 5.07 | 5.72 | 5.65 | 5.45 | 5.76 | 5.40 | 7.29 |
α | 0.930 | 0.948 | 0.957 | 0.900 | 0.952 | 0.969 | 0.908 | 0.959 | 0.978 | 1.000 | 0.953 | 0.908 | 0.992 | 0.878 | 0.932 | 0.944 | 0.595 |
R2 | 0.909 | 0.952 | 0.869 | 0.869 | 0.909 | 0.909 | 0.869 | 0.909 | 0.909 | 0.869 | 0.869 | 0.909 | 0.909 | 0.909 | 0.833 | 0.893 | 0.618 |
nex | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | -- | 0 |
R3 | 0.993 | 0.991 | 0.978 | 0.965 | 0.983 | 0.966 | 0.944 | 0.978 | 1.008 | 0.977 | 0.927 | 1.079 | 0.988 | 0.999 | 0.938 | 0.981 | 0.997 |
The system of west main canal in Shitouhe river irrigation district | |||||||||||||||||
Tmax | 25 | 24 | 24 | 25 | 25 | 25 | 24 | 24 | 24 | 24 | 24 | 25 | 24 | 23 | 24 | 24 | 38 |
R1 (%) | 7.34 | 7.18 | 7.34 | 7.21 | 7.13 | 7.56 | 7.20 | 7.59 | 7.22 | 7.64 | 8.06 | 7.84 | 8.11 | 7.17 | 7.25 | 7.46 | 8.97 |
α | 0.789 | 0.814 | 0.827 | 0.926 | 0.902 | 0.747 | 0.879 | 0.703 | 0.793 | 0.755 | 0.647 | 0.709 | 0.630 | 0.948 | 0.824 | 0.793 | 0.445 |
R2 | 0.843 | 0.878 | 0.878 | 0.843 | 0.843 | 0.843 | 0.878 | 0.878 | 0.878 | 0.878 | 0.878 | 0.843 | 0.878 | 0.916 | 0.878 | 0.869 | 0.555 |
nex | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | -- | 0 |
R3 | 0.924 | 0.978 | 0.963 | 0.984 | 0.982 | 0.956 | 0.945 | 0.950 | 0.925 | 1.036 | 0.957 | 0.921 | 0.956 | 1.032 | 0.955 | 0.964 | 0.934 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, T.; Zhao, R.-H.; Li, Y.-B.; Zhao, W.-J.; Ma, X.-Y. Irrigation Canal System Delivery Scheduling Based on a Particle Swarm Optimization Algorithm. Water 2018, 10, 1281. https://doi.org/10.3390/w10091281
Liu Y, Yang T, Zhao R-H, Li Y-B, Zhao W-J, Ma X-Y. Irrigation Canal System Delivery Scheduling Based on a Particle Swarm Optimization Algorithm. Water. 2018; 10(9):1281. https://doi.org/10.3390/w10091281
Chicago/Turabian StyleLiu, Ye, Ting Yang, Rong-Heng Zhao, Yi-Bo Li, Wen-Ju Zhao, and Xiao-Yi Ma. 2018. "Irrigation Canal System Delivery Scheduling Based on a Particle Swarm Optimization Algorithm" Water 10, no. 9: 1281. https://doi.org/10.3390/w10091281