Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
2.4. Two-End-Member Mixing Model
2.5. Statistical Analysis
3. Results
3.1. Environmental Parameters
3.2. Spatial Variations of Dissolved Inorganic Nitrogen, Silicate, and Nutrient Ratios
3.3. Abundance and Variations in Different P Species
3.4. Partitioning of P between Dissolved and Particulate Phases
4. Discussion
4.1. Abundance and Partitioning of P Species
4.2. Factors Controlling and Source of the Different P Species
4.3. Effect of the Dafengjiang River Discharge on P Dynamics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
P | Phosphorus |
TP | Total phosphorus |
TDP | Total dissolved phosphorus |
DIP | Dissolved inorganic phosphorus |
DOP | Dissolved organic phosphorus |
TPP | Total particulate phosphorus |
DSi | Dissolved silicate |
PCA | Principal component analysis |
DRE | Dafengjiang River estuary |
DIN | Dissolved inorganic nitrogen |
NO3− | Nitrate |
NO2− | Nitrite |
NH4+ | Ammonium |
T | Temperature |
S | Salinity |
DO | Dissolved oxygen |
Chl-a | Chlorophyll a |
References
- Slomp, C.P. Phosphorus cycling in the estuarine and coastal zones: Sources, sinks, and transformations. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 5, pp. 201–229. ISBN 9780080878850. [Google Scholar]
- Yang, B.; Song, G.D.; Liu, S.M.; Jin, J. Phosphorus recycling and burial in core sediments of the East China Sea. Mar. Chem. 2017, 192, 59–72. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Zhang, G.L. Geochemical characteristics of phosphorus in surface sediments from the continental shelf region of the northern South China Sea. Mar. Chem. 2018, 198, 44–55. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Wu, Y.; Zhang, J. Phosphorus speciation and availability in sediments off the eastern coast of Hainan Island, South China Sea. Cont. Shelf Res. 2016, 118, 111–127. [Google Scholar] [CrossRef]
- Bastami, K.D.; Neyestani, M.R.; Raeisi, H.; Shafeian, E.; Baniamam, M.; Shirzadi, A.; Esmaeilzadeh, M.; Mozaffari, S.; Shahrokhi, B. Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea. Mar. Pollut. Bull. 2018, 126, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Guo, L.D. Dynamic changes in the abundance and chemical speciation of dissolved and particulate phosphorus across the river-lake interface in southwest Lake Michigan. Limnol. Oceanogr. 2016, 61, 771–789. [Google Scholar] [CrossRef]
- Li, R.H.; Xu, J.; Li, X.F.; Shi, Z.; Harrison, P.J. Spatiotemporal variability in phosphorus species in the Pearl River Estuary: Influence of the river discharge. Sci. Rep. 2017, 7, 13649. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Guo, L.D.; Chen, M.; Cai, Y.H. Distribution, partitioning and mixing behavior of phosphorus species in the Jiulong River estuary. Mar. Chem. 2013, 157, 93–105. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, C.W.; Bong, C.W.; Affendi, Y.A.; Hii, Y.S.; Kudo, I. Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. Mar. Pollut. Bull. 2018, 128, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Hecky, R.E.; Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 1988, 33, 796–822. [Google Scholar] [CrossRef]
- Vilmin, L.; Aissa-Grouz, N.; Garnier, J.; Billen, G.; Mouchel, J.M.; Poulin, M.; Flipo, N. Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River. Biogeochemistry 2015, 122, 229–251. [Google Scholar] [CrossRef]
- Boyer, L.A.; Plath, K.; Zeitlinger, J.; Brambrink, T.; Medeiros, L.A.; Lee, T.I.; Levine, S.S.; Wernig, M.; Tajonar, A.; Ray, M.K.; et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006, 441, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Zhang, J.Z. Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound. Environ. Sci. Technol. 2010, 44, 7790–7795. [Google Scholar] [CrossRef] [PubMed]
- Ruttenberg, K.C.; Sulak, D.J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr) oxides in seawater. Geochim. Cosmochim. Acta 2011, 75, 4095–4112. [Google Scholar] [CrossRef]
- Nausch, M.; Nausch, G. Dissolved phosphorus in the Baltic Sea–Occurrence and relevance. J. Mar. Syst. 2011, 87, 37–46. [Google Scholar] [CrossRef]
- Yoshimura, T.; Nishioka, J.; Ogawa, H.; Kuma, K.; Saito, H.; Tsuda, A. Dissolved organic phosphorus production and decomposition during open ocean diatom blooms in the subarctic Pacific. Mar. Chem. 2014, 165, 46–54. [Google Scholar] [CrossRef]
- Huang, B.Q.; Ou, L.J.; Wang, X.L.; Huo, W.Y.; Li, R.X.; Hong, H.S.; Zhu, M.Y.; Qi, Y.Z. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat. Microb. Ecol. 2007, 49, 195–206. [Google Scholar] [CrossRef]
- Boge, G.; Lespilette, M.; Jamet, D.; Jamet, J.L. Role of sea water DIP and DOP in controlling bulk alkaline phosphatase activity in the N. W. Mediterranean Sea (Toulon, France). Mar. Pollut. Bull. 2012, 64, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, M.; Hashihama, F.; Yamada, N.; Kinouchi, S. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the western North Pacific Ocean. Front. Microbiol. 2012, 3, 99. [Google Scholar] [CrossRef] [PubMed]
- Paytan, A.; McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 2007, 107, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Guo, L.D.; Chen, M.; Tong, J.L.; Lin, F. The distribution and chemical speciation of dissolved and particulate phosphorus in the Bering Sea and the Chukchi–Beaufort Seas. Deep Sea Res. Part II 2012, 81, 79–94. [Google Scholar] [CrossRef]
- Conley, D.J.; Smith, W.M.; Cornwell, J.C.; Fisher, T.R. Transformation of particle-bound phosphorus at the land-sea interface. Estuar. Coast. Shelf Sci. 1995, 40, 161–176. [Google Scholar] [CrossRef]
- Jordan, T.E.; Cornwell, J.C.; Boynton, W.R.; Anderson, J.T. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnol. Oceanogr. 2008, 53, 172–184. [Google Scholar] [CrossRef]
- Slomp, C.P.; Van der Gaast, S.J.; Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 1996, 52, 55–73. [Google Scholar] [CrossRef]
- Lin, P.; Klump, J.V.; Guo, L.D. Variations in chemical speciation and reactivity of phosphorus between suspended-particles and surface-sediments in seasonal hypoxia-influenced Green Bay. J. Great Lakes Res. 2018. [Google Scholar] [CrossRef]
- Meng, J.; Yao, P.; Yu, Z.G.; Bianchi, T.S.; Zhao, B.; Pan, H.H.; Li, D. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuar. Coast. Shelf Sci. 2014, 144, 27–38. [Google Scholar] [CrossRef]
- Tang, D.L.; Kester, D.R.; Ni, I.H.; Qi, Y.Z.; Kawamura, H. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae 2003, 2, 89–99. [Google Scholar] [CrossRef]
- Chai, C.; Yu, Z.M.; Song, X.X.; Cao, X.H. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia 2006, 563, 313–328. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Zhang, J.; Wu, Y.; Zhang, Y.Y.; Lin, J.; Liu, S.M. Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition. Mar. Chem. 2011, 125, 108–116. [Google Scholar] [CrossRef]
- Yang, B.; Fang, H.Y.; Zhong, Q.P.; Zhang, C.X.; Li, S.P. Distribution characteristics of nutrients and eutrophication assessment in summer in Qinzhou Bay. Mar. Sci. Bull. 2012, 31, 640–645. (In Chinese) [Google Scholar]
- Lai, J.X.; Jiang, F.J.; Ke, K.; Xu, M.B.; Lei, F.; Chen, B. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China. Chin. J. Oceanol. Limnol. 2014, 32, 1128–1144. [Google Scholar] [CrossRef]
- Yang, B.; Zhong, Q.P.; Zhang, C.X.; Lu, D.L.; Liang, Y.R.; Li, S.P. Spatio-temporal variations of chlorophyll a and primary productivity and its influence factors in Qinzhou Bay. Acta Sci. Circums. 2015, 35, 1333–1340. (In Chinese) [Google Scholar]
- Li, P.Y.; Xue, R.; Wang, Y.H.; Zhang, R.J.; Zhang, G. Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk. Mar. Pollut. Bull. 2015, 90, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.F.; Huang, H.J.; Yan, L.W.; Bi, H.B.; Zhang, Z.H. Distribution and diffusion of suspended matters based on remote sensing in the Dafengjiang Estuary. Trans. Oceanol. Limnol. 2005, 27, 14–20. (In Chinese) [Google Scholar]
- Committee of Annals of Chinese Estuaries. Annals of Chinese Estuaries; Ocean Press: Beijing, China, 1998; Volume 14. (In Chinese) [Google Scholar]
- Xu, S.Q.; Li, J.M.; Lu, S.B.; Zhong, Q.P.; Chen, M.E. Current situation and sustainable development of mangrove resources in the Guangxi Beibu Gulf. Bull. Biol. 2010, 45, 11–14. (In Chinese) [Google Scholar]
- Lagos, J.E.; Jiang, J.; Sindelar, S. Peoples Republic of China Sugar Annual 2011; Required Report–Public Distribution CH11019; Global Agricultural Information Network (GAIN): Beijing, China, 2011. [Google Scholar]
- Bai, J.; Gan, S. Eucalyptus plantations in China. In Reports Submitted to the Regional Expert Consultation on Eucalyptus. FAO Regional Office for Asia and the Pacific (RAP): Bangkok, Thailand, 1996. [Google Scholar]
- Herbeck, L.S.; Sollich, M.; Unger, D.; Holmer, M.; Jennerjahn, T.C. Impact of pond aquaculture effluents on seagrass performance in NE Hainan, tropical China. Mar. Pollut. Bull. 2014, 85, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Lai, D.Y.; Jin, B.; Bastviken, D.; Tan, L.; Tong, C. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads. Sci. Total Environ. 2017, 603, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Funge-Smith, S.J.; Briggs, M.R. Nutrient budgets in intensive shrimp ponds: Implications for sustainability. Aquaculture 1998, 164, 117–133. [Google Scholar] [CrossRef]
- Hansen, H.P.; Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis; Grasshoff, K., Kremling, K., Ehrhardt, M., Eds.; WILEY-VCH: Weinheim, Germany, 1999; pp. 159–288. ISBN 3-527-29589-5. [Google Scholar]
- Liu, S.M.; Zhang, J.; Chen, H.T.; Wu, Y.; Xiong, H.; Zhang, Z.F. Nutrients in the Changjiang and its tributaries. Biogeochemistry 2003, 62, 1–18. [Google Scholar] [CrossRef]
- Cai, Y.H.; Guo, L.D. Abundance and variation of colloidal organic phosphorus in riverine, estuarine, and coastal waters in the northern Gulf of Mexico. Limnol. Oceanogr. 2009, 54, 1393–1402. [Google Scholar] [CrossRef]
- Yang, B.; Cao, L.; Liu, S.M.; Zhang, G.S. Biogeochemistry of bulk organic matter and biogenic elements in surface sediments of the Yangtze River Estuary and adjacent sea. Mar. Pollut. Bull. 2015, 96, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Aspila, K.I.; Agemian, H.; Chau, A.S.Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 1976, 101, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A manual for Chemical and Biological Methods for Seawater Analysis. Pergamon Press: Oxford, UK, 1984; p. 173. ISBN 0-08-030288-2. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Gopinath, A.; Joseph, N.; Sujatha, C.H.; Nair, S.M. Forms of Nitrogen (NO3-N; NO2-N and NH2CONH2-N) and their relations to A.O.U in the Indian coastal waters of Arabian Sea. Chem. Ecol. 2002, 18, 233–244. [Google Scholar] [CrossRef]
- Durga Rao, G.; Kanuri, V.V.; Kumaraswami, M.; Ezhilarasan, P.; Rao, V.D.; Patra, S.; Dash, S.K.; Peter, M.; Rao, V.R.; Ramu, K. Dissolved nutrient dynamics along the southwest coastal waters of India during northeast monsoon: A case study. Chem. Ecol. 2017, 33, 229–246. [Google Scholar] [CrossRef]
- Justić, D.; Rabalais, N.N.; Turner, R.E.; Dortch, Q. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 1995, 40, 339–356. [Google Scholar] [CrossRef]
- Shim, M.J.; Swarzenski, P.W.; Shiller, A.M. Dissolved and colloidal trace elements in the Mississippi River delta outflow after Hurricanes Katrina and Rita. Cont. Shelf Res. 2012, 42, 1–9. [Google Scholar] [CrossRef]
- Baker, D.B.; Confesor, R.; Ewing, D.E.; Johnson, L.T.; Kramer, J.W.; Merryfield, B.J. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: The importance of bioavailability. J. Great Lakes Res. 2014, 40, 502–517. [Google Scholar] [CrossRef]
- Van der Zee, C.; Roevros, N.; Chou, L. Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Mar. Chem. 2007, 106, 76–91. [Google Scholar] [CrossRef]
- Lin, P.; Chen, M.; Guo, L.D. Speciation and transformation of phosphorus and its mixing behavior in the Bay of St. Louis estuary in the northern Gulf of Mexico. Geochim. Cosmochim. Acta 2012, 87, 283–298. [Google Scholar] [CrossRef]
- Cai, Y.H.; Guo, L.D.; Douglas, T.A.; Whitledge, T.E. Seasonal variations in nutrient concentrations and speciation in the Chena River, Alaska. J. Geophys. Res. Biogeosci. 2008, 113, G030035. [Google Scholar] [CrossRef]
- Guo, L.D.; Zhang, J.Z.; Guéguen, C. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob. Biogeochem. Cycles 2004, 18, GB1038. [Google Scholar] [CrossRef]
- Guo, L.D.; Cai, Y.H.; Belzile, C.; Macdonald, R.W. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry 2012, 107, 187–206. [Google Scholar] [CrossRef]
- Ho, A.Y.; Xu, J.; Yin, K.D.; Jiang, Y.L.; Yuan, X.C.; He, L.; Anderson, D.M.; Lee, J.H.W.; Harrison, P.J. Phytoplankton biomass and production in subtropical Hong Kong waters: influence of the Pearl River outflow. Estuar. Coast. 2010, 33, 170–181. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Huang, X.L. Effect of temperature and salinity on phosphate sorption on marine sediments. Environ. Sci. Technol. 2011, 45, 6831–6837. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.S.; Edgington, D.N. Biogeochemical control of phosphorus cycling and primary production in Lake Michigan. Limnol. Oceanogr. 1994, 39, 961–968. [Google Scholar] [CrossRef]
- Lean, D.R.S. Phosphorus dynamics in lake water. Science 1973, 179, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.L.; Chen, B.; Lai, J.X.; Lu, J.C.; Ya, H.Z. Study on the utilization of different phosphorus and alkaline phosphatase characteristics of Phaeoecystis globosa cultivated from Beibu Gulf. Guangxi Sci. 2018, 25, 80–86. (In Chinese) [Google Scholar]
- Yoshimura, T.; Nishioka, J.; Saito, H.; Takeda, S.; Tsuda, A.; Wells, M.L. Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Mar. Chem. 2007, 103, 112–121. [Google Scholar] [CrossRef]
- Li, R.H.; Liu, S.M.; Li, Y.W.; Zhang, G.L.; Ren, J.L.; Zhang, J. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences 2014, 11, 481–506. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Purvaja, R.; Ramesh, R. Seasonal and tidal dynamics of nutrients and chlorophyll a in a tropical mangrove estuary, southeast coast of India. Indian J. Mar. Sci. 2008, 37, 132–140. [Google Scholar]
- Burford, M.A.; Rothlisberg, P.C. Factors limiting phytoplankton production in a tropical continental shelf ecosystem. Estuar. Coast. Shelf Sci. 1999, 48, 541–549. [Google Scholar] [CrossRef]
- Lin, P.; Klump, J.V.; Guo, L.D. Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan. Sci. Total Environ. 2016, 541, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
Sample Locations | Site | Longitude (°E) | Latitude (°N) | Depth (m) | Temperature (°C) | Salinity (psu) | pH | DO (mg L−1) | Chl-a (μg L−1) |
---|---|---|---|---|---|---|---|---|---|
Surface Waters | |||||||||
Lower Dafengjiang River | D1 | 108.87 | 21.74 | 10.0 | 15.71 | 18.38 | 8.12 | 9.12 | 2.52 |
D2 | 108.86 | 21.72 | 14.6 | 15.71 | 19.97 | 8.17 | 9.15 | 4.90 | |
D3 | 108.85 | 21.71 | 10.2 | 15.70 | 21.04 | 8.23 | 9.14 | 2.72 | |
D4 | 108.86 | 21.70 | 8.0 | 15.68 | 21.85 | 8.24 | 9.15 | 5.65 | |
D5 | 108.85 | 21.68 | 7.3 | 15.70 | 22.97 | 8.29 | 9.08 | 6.24 | |
D6 | 108.87 | 21.65 | 6.0 | 15.72 | 24.06 | 8.44 | 9.05 | 2.69 | |
D7 | 108.88 | 21.61 | 11.0 | 15.78 | 24.65 | 8.46 | 9.18 | 3.30 | |
Qinzhou Bay | D8 | 108.94 | 21.57 | 6.6 | 15.75 | 25.86 | 8.57 | 9.82 | 3.09 |
D9 | 108.97 | 21.55 | 6.4 | 16.11 | 25.64 | 8.61 | 9.93 | 4.18 | |
D10 | 108.89 | 21.57 | 6.2 | 15.81 | 25.29 | 8.60 | 9.66 | 6.53 | |
D11 | 108.89 | 21.55 | 6.0 | 16.21 | 25.70 | 8.63 | 9.80 | 2.41 | |
D12 | 108.83 | 21.57 | 5.5 | 15.61 | 26.44 | 8.63 | 9.67 | 6.56 | |
D13 | 108.80 | 21.55 | 6.0 | 16.11 | 26.61 | 8.57 | 9.58 | 6.96 | |
Bottom Waters | |||||||||
Lower Dafengjiang River | D1 | 108.87 | 21.74 | 10.0 | 15.50 | 19.08 | 8.26 | 9.12 | 2.75 |
D2 | 108.86 | 21.72 | 14.6 | 15.51 | 20.91 | 8.27 | 9.11 | 2.93 | |
D3 | 108.85 | 21.71 | 10.2 | 15.61 | 21.79 | 8.28 | 9.17 | 3.51 | |
D4 | 108.86 | 21.70 | 8.0 | 15.51 | 22.88 | 8.29 | 9.16 | 5.07 | |
D5 | 108.85 | 21.68 | 7.3 | 15.51 | 23.90 | 8.38 | 9.01 | 3.13 | |
D6 | 108.87 | 21.65 | 6.0 | 15.60 | 24.48 | 8.45 | 9.04 | 2.52 | |
D7 | 108.88 | 21.61 | 11.0 | 15.61 | 25.68 | 8.50 | 9.13 | 4.39 | |
Qinzhou Bay | D8 | 108.94 | 21.57 | 6.6 | 15.51 | 25.92 | 8.59 | 9.95 | 3.50 |
D9 | 108.97 | 21.55 | 6.4 | 15.71 | 25.97 | 8.64 | 9.99 | 4.24 | |
D10 | 108.89 | 21.57 | 6.2 | 15.62 | 25.82 | 8.61 | 9.76 | 4.55 | |
D11 | 108.89 | 21.55 | 6.0 | 15.90 | 25.92 | 8.65 | 9.90 | 2.41 | |
D12 | 108.83 | 21.57 | 5.5 | 15.53 | 26.47 | 8.64 | 9.71 | 5.60 | |
D13 | 108.80 | 21.55 | 6.0 | 15.78 | 26.81 | 8.58 | 9.38 | 6.28 |
Sample Locations | Site | NO2− (μM) | NO3− (μM) | NH4+ (μM) | DIN (μM) | DSi (μM) | DIP (μM) | DOP (μM) | TDP (μM) | TPP (μM) | TP (μM) |
---|---|---|---|---|---|---|---|---|---|---|---|
Surface Waters | |||||||||||
Lower Dafengjiang River | D1 | 0.90 | 13.10 | 7.73 | 21.73 | 11.75 | 1.59 | 0.91 | 2.50 | 0.22 | 2.72 |
D2 | 1.01 | 14.60 | 6.43 | 22.04 | 11.27 | 1.31 | 0.51 | 1.82 | 0.25 | 2.07 | |
D3 | 1.01 | 11.40 | 6.15 | 18.56 | 10.47 | 1.07 | 0.10 | 1.17 | 0.32 | 1.49 | |
D4 | 1.13 | 11.08 | 6.20 | 18.41 | 8.82 | 1.47 | 0.22 | 1.69 | 0.31 | 2.00 | |
D5 | 0.80 | 8.88 | 5.15 | 14.83 | 5.85 | 0.94 | 0.47 | 1.41 | 0.19 | 1.60 | |
D6 | 0.85 | 6.60 | 4.68 | 12.13 | 3.96 | 0.82 | 0.59 | 1.41 | 0.24 | 1.65 | |
D7 | 0.78 | 5.85 | 3.30 | 9.93 | 4.29 | 0.22 | 0.38 | 0.60 | 0.22 | 0.82 | |
Qinzhou Bay | D8 | 0.53 | 3.10 | 0.70 | 4.33 | 1.78 | 0.02 | 1.02 | 1.04 | 0.19 | 1.23 |
D9 | 0.30 | 2.70 | 0.48 | 3.48 | 1.34 | 0.03 | 0.83 | 0.86 | 0.31 | 1.17 | |
D10 | 0.63 | 3.00 | 0.63 | 4.26 | 1.65 | 0.05 | 0.18 | 0.23 | 0.21 | 0.44 | |
D11 | 0.13 | 1.28 | 1.05 | 2.46 | 1.04 | 0.02 | 0.14 | 0.16 | 0.24 | 0.40 | |
D12 | 0.05 | 0.60 | 0.25 | 0.90 | 0.75 | 0.01 | 0.10 | 0.11 | 0.24 | 0.35 | |
D13 | 0.05 | 1.33 | 0.40 | 1.78 | 0.71 | 0.01 | 0.28 | 0.29 | 0.10 | 0.39 | |
Bottom Waters | |||||||||||
Lower Dafengjiang River | D1 | 1.23 | 12.58 | 7.53 | 21.34 | 8.87 | 1.00 | 1.33 | 2.33 | 0.15 | 2.48 |
D2 | 1.35 | 11.55 | 6.80 | 19.70 | 10.85 | 1.21 | 0.69 | 1.90 | 0.17 | 2.07 | |
D3 | 0.91 | 9.05 | 5.68 | 15.64 | 7.69 | 0.92 | 1.04 | 1.96 | 0.23 | 2.19 | |
D4 | 0.91 | 9.15 | 5.10 | 15.16 | 6.89 | 0.54 | 0.47 | 1.01 | 0.26 | 1.27 | |
D5 | 0.63 | 7.60 | 4.05 | 12.28 | 6.37 | 0.76 | 0.37 | 1.13 | 0.20 | 1.33 | |
D6 | 0.85 | 6.75 | 3.40 | 11.00 | 3.82 | 0.55 | 1.31 | 1.86 | 0.19 | 2.05 | |
D7 | 0.50 | 4.58 | 1.25 | 6.33 | 3.82 | 0.21 | 0.35 | 0.56 | 0.23 | 0.79 | |
Qinzhou Bay | D8 | 0.58 | 2.88 | 1.30 | 4.76 | 1.27 | 0.02 | 0.66 | 0.68 | 0.17 | 0.85 |
D9 | 0.58 | 2.78 | 1.58 | 4.94 | 1.11 | 0.02 | 0.89 | 0.91 | 0.27 | 1.18 | |
D10 | 0.58 | 4.73 | 0.50 | 5.81 | 2.41 | 0.04 | 0.50 | 0.54 | 0.24 | 0.78 | |
D11 | 0.45 | 1.28 | 0.63 | 2.36 | 0.90 | 0.02 | 0.20 | 0.22 | 0.21 | 0.43 | |
D12 | 0.48 | 2.55 | 0.15 | 3.18 | 0.61 | 0.02 | 0.50 | 0.52 | 0.26 | 0.78 | |
D13 | 0.10 | 0.78 | 0.68 | 1.56 | 1.04 | 0.01 | 0.29 | 0.30 | 0.04 | 0.34 |
Water Samples | Relational Expression | R2 |
---|---|---|
Surface | y = −2.8938 + 79.036 (DIN vs. salinity) | 0.92 |
y = −1.5725 + 42.310 (DSi vs. salinity) | 0.96 | |
y = −0.2233 + 5.8797 (DIP vs. salinity) | 0.88 | |
y = −0.2453 + 6.8431 (TDP vs. salinity) | 0.76 | |
Bottom | y = −2.7111 + 75.367 (DIN vs. salinity) | 0.95 |
y = −1.3422 + 36.869 (DSi vs. salinity) | 0.86 | |
y = −0.1698 + 4.5330 (DIP vs. salinity) | 0.85 | |
y = −0.2600 + 7.3839 (TDP vs. salinity) | 0.77 |
Study Area | DIP (μM) | DOP (μM) | TPP (μM) | DIP/TP (%) | DOP/TP (%) | TPP/TP (%) | Reference |
---|---|---|---|---|---|---|---|
Fox River | 0.68–0.98 (0.83 ± 0.22) | 0.52–0.68 (0.60 ± 0.11) | 1.97 | 24 | 18 | 58 | [59] |
Milwaukee River | 0.69–3.05 (1.81 ± 1.19) | 0.11–0.91 (0.54 ± 0.38) | 1.38 | 47 | 16 | 37 | [6] |
Mississippi River | 2.07–4.20 (2.89 ± 1.15) | 0.24–0.45 (0.35 ± 0.15) | 5.26 | 34 | 4 | 62 | [44,52] |
Maumee Rive | 2.74 | 0.07 | 14.26 | 16 | 0.3 | 83.7 | [53] |
Jourdon River | 0.03 | 0.16 | 0.97 | 3 | 14 | 83 | [55] |
Chena River | 0.03–0.30 | 0.06 ± 0.06 | 0.6 | 19 | 7 | 74 | [56] |
Jiulong River | 2.14 | 0.55 | 5.11 | 27 | 7 | 66 | [8] |
Scheldt estuary | 3.3 | 0.7 | 5.2 | 36 | 8 | 56 | [54] |
Dafengjiang River | 0.22–1.59 (1.06 ± 0.46) | 0.10–0.91 (0.45 ± 0.26) | 0.22 | 58 | 27 | 15 | This study |
T | S | pH | DO | DIN | DSi | Chl-a | DIP | DOP | TDP | TPP | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | ||||||||||||
S | 0.343 | |||||||||||
pH | 0.384 | 0.944 a | ||||||||||
DO | 0.429 b | 0.674 a | 0.815 a | |||||||||
DIN | −0.445 b | −0.967 a | −0.971 a | −0.771 a | ||||||||
DSi | −0.402 b | −0.960 a | −0.972 a | −0.754 a | 0.974 a | |||||||
Chl-a | 0.072 | 0.342 | 0.216 | 0.144 | −0.318 | −0.299 | ||||||
DIP | −0.356 | −0.931 a | −0.956 a | −0.770 a | 0.955 a | 0.949 a | −0.253 | |||||
DOP | −0.301 | −0.331 | −0.227 | −0.118 | 0.317 | 0.206 | −0.435 b | 0.214 | ||||
TDP | −0.424 b | −0.877 a | −0.843 a | −0.646 a | 0.888 a | 0.827 a | −0.413 b | 0.870 a | 0.668 a | |||
TPP | −0.003 | −0.176 | −0.145 | 0.056 | 0.205 | 0.206 | −0.168 | 0.202 | −0.118 | 0.094 | ||
TP | −0.419 b | −0.882 a | −0.846 a | −0.634 a | 0.895 a | 0.835 a | −0.422 b | 0.877 a | 0.650 a | 0..996 a | 0.179 |
F1 | F2 | F3 | |
---|---|---|---|
S | −0.951 | −0.402 | −0.083 |
pH | −0.983 | −0.250 | −0.008 |
DO | −0.831 | 0.079 | 0.233 |
DIN | 0.986 | 0.372 | 0.047 |
DSi | 0.971 | 0.283 | 0.090 |
Chl-a | −0.258 | −0.758 | −0.293 |
DIP | 0.971 | 0.283 | 0.079 |
DOP | 0.301 | 0.902 | −0.302 |
TDP | 0.892 | 0.671 | −0.092 |
TPP | 0.147 | 0.079 | 0.863 |
TP | 0.894 | 0.670 | −0.017 |
Eigenvalue | 7.607 | 1.456 | 1.167 |
% of variance | 63.39 | 12.14 | 9.720 |
Cumulative% of variance | 63.39 | 75.53 | 85.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Kang, Z.-J.; Lu, D.-L.; Dan, S.F.; Ning, Z.-M.; Lan, W.-L.; Zhong, Q.-P. Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water 2018, 10, 1103. https://doi.org/10.3390/w10081103
Yang B, Kang Z-J, Lu D-L, Dan SF, Ning Z-M, Lan W-L, Zhong Q-P. Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water. 2018; 10(8):1103. https://doi.org/10.3390/w10081103
Chicago/Turabian StyleYang, Bin, Zhen-Jun Kang, Dong-Liang Lu, Solomon Felix Dan, Zhi-Ming Ning, Wen-Lu Lan, and Qiu-Ping Zhong. 2018. "Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf" Water 10, no. 8: 1103. https://doi.org/10.3390/w10081103
APA StyleYang, B., Kang, Z.-J., Lu, D.-L., Dan, S. F., Ning, Z.-M., Lan, W.-L., & Zhong, Q.-P. (2018). Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water, 10(8), 1103. https://doi.org/10.3390/w10081103