# Correction: Oubennaceur, K., et al. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. Water 2018, 10, 272

^{1}

^{2}

^{*}

- (1)
- In Section 2.2, hydraulic Model of the Richelieu River, Line 5 of the first paragraph, reference 67 should be added at the end as follows: “ … the two equations of momentum conservation (3) and (4) under steady-state flow conditions with special treatment of drying–wetting areas [67].”
- (2)
- After a minor correction of editorial typos, Equations (2)–(4) should be the following:$$\text{}\frac{\partial \mathrm{h}}{\partial \mathrm{t}}+\text{}\frac{\partial {\mathrm{q}}_{\mathrm{x}}}{\partial \mathrm{x}}+\frac{\partial {\mathrm{q}}_{\mathrm{y}}}{\partial \mathrm{y}}+\left(\text{}\mathsf{\gamma}+\mathsf{\delta}\right)\left(\frac{{\partial}^{2}\mathrm{h}}{\partial {\mathrm{x}}^{2}}+\frac{{\partial}^{2}\mathrm{h}}{\partial {\mathrm{y}}^{2}}\right)=0\text{}\text{}$$$$\text{}\frac{\partial {\mathrm{q}}_{\mathrm{x}}}{\partial \mathrm{t}}+\text{}\frac{\partial}{\partial \mathrm{x}}\left(\frac{{\mathrm{q}}_{\mathrm{x}}{\mathrm{q}}_{\mathrm{x}}}{\mathrm{H}}\right)+\text{}\frac{\partial}{\partial \mathrm{y}}\left(\frac{{\mathrm{q}}_{\mathrm{x}}{\mathrm{q}}_{\mathrm{y}}}{\mathrm{H}}\right)+{\mathrm{c}}^{2}\frac{\partial \mathrm{h}}{\partial \mathrm{x}}-\frac{1}{\mathsf{\rho}}\times \left[\frac{\partial}{\partial \mathrm{x}}\left({\mathrm{H}\mathsf{\tau}}_{\mathrm{xx}}\right)+\frac{\partial}{\partial \mathrm{y}}\left({\mathrm{H}\mathsf{\tau}}_{\mathrm{xy}}\right)-{\mathsf{\tau}}_{\mathrm{x}}^{\mathrm{b}}+{\mathsf{\tau}}_{\mathrm{x}}^{\mathrm{s}}\right]-{\mathrm{f}}_{\mathrm{c}}{\mathrm{q}}_{y}=0\text{}$$$$\text{}\frac{\partial {\mathrm{q}}_{\mathrm{y}}}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}}\left(\frac{{\mathrm{q}}_{\mathrm{y}}{\mathrm{q}}_{\mathrm{x}}}{\mathrm{H}}\right)+\text{}\frac{\partial}{\partial \mathrm{y}}\left(\frac{{\mathrm{q}}_{\mathrm{y}}{\mathrm{q}}_{\mathrm{y}}}{\mathrm{H}}\right)+{\mathrm{c}}^{2}\frac{\partial \mathrm{h}}{\partial \mathrm{y}}-\frac{1}{\mathsf{\rho}}\times \left[\frac{\partial}{\partial \mathrm{x}}\left({\mathrm{H}\mathsf{\tau}}_{\mathrm{yx}}\right)+\frac{\partial}{\partial \mathrm{y}}\left({\mathrm{H}\mathsf{\tau}}_{\mathrm{yy}}\right)-{\mathsf{\tau}}_{\mathrm{y}}^{\mathrm{b}}+{\mathsf{\tau}}_{\mathrm{y}}^{\mathrm{s}}\right]+{\mathrm{f}}_{\mathrm{c}}{\mathrm{q}}_{x}=0$$
- (3)
- Six editorial corrections were made in the paragraph of the Equations (2)–(4) (Page 6/19, 1st paragraph, lines 1 to 7):
- -
- The flow rate m
^{2}/s. - -
- The sentence “r is the water density” should be deleted.
- -
- The sentence “$\mathsf{\gamma}$ Lapidus coefficient” should be added.
- -
- The sentence “$\mathsf{\delta}$ hydraulic conductivity (set to 0 in wet areas and to 1 in dry areas)” should be added.
- -
- The sentence “The model does not take into account the influence of the wind and the Coriolis force” should be deleted.
- -
- The sentence “The continuous fields h, u and v are discretized over structured mesh” should mention an unstructured mesh instead of a structured one.Therefore, the paragraph should read:“where q
_{x}and q_{y}are the flow rates in x and y direction (m^{2}/s), h is the water level (m), H is the depth of water, c is wave velocity (m/s), ρ is the density, u(u,v) are the components of the of velocity vector (m/s), $\mathsf{\gamma}$ Lapidus coefficient, $\mathsf{\delta}$ hydraulic conductivity (set to 0 in wet areas and to 1 in dry areas), f_{c}is the Coriolis force, τ_{ij}is the Reynolds stresses (m/s^{2}m), ${\mathsf{\tau}}_{\mathrm{x}}^{\mathrm{b}}$ and ${\mathsf{\tau}}_{\mathrm{y}}^{\mathrm{b}}$ are the bottom frictions in the x and y directions (kg/s^{2}m), ${\mathsf{\tau}}_{\mathrm{x}}^{\mathrm{s}}$ and ${\mathsf{\tau}}_{\mathrm{y}}^{\mathrm{s}}$ are the surface frictions in the x and y directions (kg/s^{2}m), and x(x,y) are the components of coordinate orientation of X(m). The continuous fields h, u and v are discretized over unstructured mesh of finite element triangles of six nodes, referred to as T6L.”

- (4)
- In line 4 of the last paragraph Page 6/19, the model domain used an unstructured mesh and not a structured one. Thus, the corresponding sentence should read:“…The model domain was discretized over a unstructured mesh of 47,643 finite elements and 97,261 nodes, …”
- (5)
- In Section 2.2, reference 70 should be deleted.

## Reference

- Oubennaceur, K.; Chokmani, K.; Nastev, M.; Tanguy, M.; Raymond, S. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. Water
**2018**, 10, 272. [Google Scholar] [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Oubennaceur, K.; Chokmani, K.; Nastev, M.; Tanguy, M.; Raymond, S.
Correction: Oubennaceur, K., et al. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. *Water* 2018, *10*, 272. *Water* **2018**, *10*, 1071.
https://doi.org/10.3390/w10081071

**AMA Style**

Oubennaceur K, Chokmani K, Nastev M, Tanguy M, Raymond S.
Correction: Oubennaceur, K., et al. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. *Water* 2018, *10*, 272. *Water*. 2018; 10(8):1071.
https://doi.org/10.3390/w10081071

**Chicago/Turabian Style**

Oubennaceur, Khalid, Karem Chokmani, Miroslav Nastev, Marion Tanguy, and Sebastien Raymond.
2018. "Correction: Oubennaceur, K., et al. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. *Water* 2018, *10*, 272" *Water* 10, no. 8: 1071.
https://doi.org/10.3390/w10081071