Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Input Data Sources
2.3. Calculation of ET0 and Aridity Index
2.4. Mann-Kendall Trend Test and Slop Estimator
3. Results
3.1. Spatial and Temporal Variation of Temperature
3.1.1. Spatial Analysis
3.1.2. Temporal Analysis
3.2. Spatial and Temporal Variation of Solar Radiation
3.2.1. Spatial Analysis
3.2.2. Temporal Analysis
3.3. Spatial and Temporal Variation of Precipitation
3.3.1. Spatial Analysis
3.3.2. Temporal Analysis
3.4. Spatial and Temporal Variation of Reference Evapotranspiration
3.4.1. Spatial Analysis
3.4.2. Temporal Analysis
3.5. Spatial and Temporal Variation of Arid Index
3.5.1. Spatial Analysis
3.5.2. Temporal Analysis
4. Discussion
4.1. Perspectives and Implications
4.2. Influence of Climate Factors on Regional Water Security
4.3. Effects of Climate Factors on Regional and National Food Security
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A Meta-Analysis of Crop Yield under Climate Change and Adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate Change Impacts on Crop Yield, Crop Water Productivity and Food Security—A Review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- O’Leary, G.J.; Aggarwal, P.K.; Calderini, D.F.; Connor, D.J.; Craufurd, P.; Eigenbrode, S.D.; Han, X.; Hatfield, J.L. Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World. Agronomy 2018, 8, 34. [Google Scholar] [CrossRef]
- Holzkämper, A. Adapting Agricultural Production Systems to Climate Change—What’s the Use of Models? Agriculture 2017, 7, 86. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Tubiello, F.N.; Van Velthuizen, H.; Wiberg, D.A. Climate Change Impacts on Irrigation Water Requirements: Effects of Mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- National Bureau of Statistics of China. China Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Sun, H.; Zhang, X.; Wang, E.; Chen, S.; Shao, L. Quantifying the Impact of Irrigation on Groundwater Reserve and Crop Production—A Case Study in the North China Plain. Eur. J. Agron. 2015, 70, 48–56. [Google Scholar] [CrossRef]
- Yang, X.L.; Chen, Y.Q.; Steenhuis, T.S.; Pacenka, S.; Gao, W.S.; Ma, L.; Zhang, M.; Sui, P. Mitigating Groundwater Depletion in North China Plain with Cropping System That Alternate Deep and Shallow Rooted Crops. Front. Plant Sci. 2017, 8, 980. [Google Scholar] [CrossRef] [PubMed]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Dai, A.; Fyfe, J.C.; Xie, S.P.; Dai, X. Decadal Modulation of Global Surface Temperature by Internal Climate Variability. Nat. Clim. Chang. 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying Uncertainties in Global and Regional Temperature Change Using an Ensemble of Observational Estimates: The Hadcrut4 Data Set. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Liepert, B.G. Observed Reductions of Surface Solar Radiation at Sites in the United States and Worldwide from 1961 to 1990. Geophys. Res. Lett. 2002, 29, 61-1–61-4. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate Change and Global Water Resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Gorelick, S.M.; Zheng, C. Global Change and the Groundwater Management Challenge. Water Resour. Res. 2015, 51, 3031–3051. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated Dryland Expansion under Climate change. Nat. Clim. Chang. 2015, 6, 166–171. [Google Scholar] [CrossRef]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Assessment of Global Aridity Change. J. Hydrol. 2015, 520, 300–313. [Google Scholar] [CrossRef]
- Cao, G.; Han, D.; Song, X. Evaluating Actual Evapotranspiration and Impacts of Groundwater Storage Change in the North China Plain. Hydrol. Process. 2014, 28, 1797–1808. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating Potential Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Frere, M.; Popov, G.F. Agrometeorological Crop Monitoring and Forecasting; FAO: Rome, Italy, 1979. [Google Scholar]
- Rietveld, M.R. A New Method for Estimating the Regression Coefficients in the Formula Relating Solar Radiation to Sunshine. Agric. Meteorol. 1978, 19, 243–252. [Google Scholar] [CrossRef]
- Snyder, R.L.; Orang, M.N.; Matyac, S.G.J.S.; Sarreshteh, S. Simetaw (Simulation of Evapotranspiration of Applied Water). In California Water Plan Update; Department of Water Resources: Sacramento, CA, USA, 2005. [Google Scholar]
- Yang, X.; Gao, W.; Shi, Q.; Chen, F.; Chu, Q. Impact of Climate Change on the Water Requirement of Summer Maize in the Huang-Huai-Hai Farming Region. Agric. Water Manag. 2013, 124, 20–27. [Google Scholar] [CrossRef]
- Yang, X.L.; Song, Z.W.; Wang, H.; Shi, Q.H.; Chen, F.; Chu, Q.Q. Spatio-Temporal Variations of Winter-Wheat Water Requirement and Climatic Causes in Huang-Huai-Hai Farming Region. Chin. J. Eco-Agric. 2012, 20, 356–362. [Google Scholar] [CrossRef]
- Song, Z.W. Construction of the Water-Saving Cropping Patterns Based on Simulation Model and Scenario Analysis: A Case of Beijing; China Agricultural University: Beijing, China, 2009. [Google Scholar]
- Huang, J.; Xu, C.; Ridoutt, B.G.; Chen, F. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water 2015, 7, 7066–7077. [Google Scholar] [CrossRef] [Green Version]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Map of the World Distribution of Arid Regions: Map at Scale 1:25,000,000 with Explanatory Note; MAB Technical Notes; UNESCO: Paris, France, 1979. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics; Griffin: London, UK, 1946; Volume 3. [Google Scholar]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 431860. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Robson, A.J. Detecting Trend and other Changes in Hydrological Data. World Climate Programme—Water, World Climate Programme Data and Monitoring, WCDMP-45, WMO/TD no. 1013; World Meteorological Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Li, W.J.; Liang, H.; Wang, P.J. Effects of Climate Warming on the Planting Boundary and Developmental Stages of Winter Wheat. J. Triticeae Crops 2013, 33, 382–388. [Google Scholar]
- Wang, Z.B.; Wang, M.; Yin, X.G.; Zhang, H.L.; Chu, Q.Q.; Wen, X.Y.; Chen, F. Spatiotemporal Change Characteristics of Heat and Rainfall during the Growth Period of Summer Maize in North China Plain from 1961 to 2010. Chin. J. Eco-Agric. 2015, 23, 473–481. [Google Scholar]
- Wang, Z.B.; Wang, M.; Yin, X.G.; Zhang, H.L.; Chu, Q.Q. Spatiotemporal Change Characteristics of Heat and Rainfall during the Growth Period of Winter Wheat in North China Plain from 1961 to 2010. J. China Agric. Univ. 2015, 20, 16–23. [Google Scholar]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; et al. Consistent Negative Response of Us Crops to High Temperatures in Observations and Crop Models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice Yields Decline with Higher Night Temperature from Global Warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal Variability of Reference Evapotranspiration and Contributing Climatic Factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, X.; Lal, R.; Zhang, F.; Chen, X.; Niu, Z.; Han, L.; Song, W. Groundwater Depletion by Agricultural Intensification in China’s Hhh Plains, since 1980s. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W.; Wang, M.; Liu, F.; Zhang, S.; Zhu, Z. Observed Changes in Winter Wheat Phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2012, 57, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Nastos, P.T.; Politi, N.; Kapsomenakis, J. Spatial and Temporal Variability of the Aridity Index in Greece. Atmos. Res. 2013, 119, 140–152. [Google Scholar] [CrossRef]
- Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F. Adapting Maize Production to Drought in the Northeast Farming Region of China. Eur. J. Agron. 2016, 77, 47–58. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Aeschbach-Hertig, W.; Gleeson, T. Regional Strategies for the Accelerating Global Problem of Groundwater Depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, E.; Yang, X.; Wang, J. Contributions of Climatic and Crop Varietal Changes to Crop Production in the North China Plain, since 1980s. Glob. Chang. Biol. 2009, 16, 2287–2299. [Google Scholar] [CrossRef]
- Bureau of Provincial Water Resources. Water Resource Bulletin; China Water Power Press: Beijing, China, 2014. [Google Scholar]
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate Change Effects on Reference Crop Evapotranspiration across Different Climatic Zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Shao, L.; Wang, Y. Changes in Evapotranspiration over Irrigated Winter Wheat and Maize in North China Plain over Three Decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Muchow, R.C.; Sinclair, T.R.; Bennett, J.M. Temperature and Solar Radiation Effects on Potential Maize Yield across Locations. Agron. J. 1990, 82, 338–343. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar Radiation Distribution inside a Greenhouse with South-Oriented Photovoltaic Roofs and Effects on Crop Productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Wang, J.; Dong, J.; Yi, Y.; Lu, G.; Oyler, J.; Smith, W.K.; Zhao, M.; Liu, J.; Running, S. Decreasing Net Primary Production Due to Drought and Slight Decreases in Solar Radiation in China from 2000 to 2012. J. Geophys. Res. Biogeosci. 2017, 122, 261–278. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Global Dimming: A Review of the Evidence for a Widespread and Significant Reduction in Global Radiation with Discussion of Its Probable Causes and Possible Agricultural Consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, J.S.; Westgate, M.E. Grain Yields with Limited Water. J. Exp. Bot. 2004, 55, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Folberth, C.; Yang, H.; Gaiser, T.; Liu, J.; Wang, X.; Williams, J.; Schulin, R. Effects of Ecological and Conventional Agricultural Intensification Practices on Maize Yields in Sub-Saharan Africa under Potential Climate Change. Environ. Res. Lett. 2014, 9, 044004. [Google Scholar] [CrossRef]
- Kadam, N.N.; Xiao, G.; Melgar, R.J.; Bahuguna, R.N.; Quinones, C.; Tamilselvan, A.; Prasad, P.V.V.; Jagadish, K.S. Chapter Three—Agronomic and Physiological Responses to High Temperature, Drought, and Elevated CO2 Interactions in Cereals. Adv. Agron. 2014, 127, 111–156. [Google Scholar]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Tewolde, H.; Fernandez, C.J.; Erickson, C.A. Wheat Cultivars Adapted to Post-Heading High Temperature Stress. J. Agron. Crop Sci. 2006, 192, 111–120. [Google Scholar] [CrossRef]
- Mondal, S.; Joshi, A.K.; Huerta-Espino, J.; Singh, R.P. Early Maturity in Wheat for Adaptation to High Temperature Stress. In Advances in Wheat Genetics: From Genome to Field; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Li, K.N.; Yang, X.G.; Liu, Z.J.; Wang, W.F.; Chen, F. Analysis of the Potential Influence of Global Climate Change on Cropping Systems in China III. The Change Characteristics of Climatic Resources in Northern China and Its Potential Influence on Cropping Systems. Sci. Agric. Sin. 2010, 43, 2088–2097. [Google Scholar]
- Hebei Province Bureau of Statistics. Hebei Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016. [Google Scholar]
Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional | |
---|---|---|---|---|---|---|---|
Tmin | |||||||
Wheat growing season | 1.3 | 2.7 | −1.2 | 4.6 | 2.8 | 2.4 | 1.9 |
Maize growing season | 19.3 | 20.9 | 17.4 | 20.3 | 19.3 | 19.9 | 19.0 |
Annual | 7.3 | 8.8 | 5.0 | 9.8 | 8.3 | 8.2 | 7.6 |
Tmax | |||||||
Wheat growing season | 12.3 | 11.8 | 10.8 | 15.1 | 11.8 | 13.5 | 12.5 |
Maize growing season | 29.4 | 28.9 | 28.2 | 29.9 | 27.3 | 29.9 | 28.6 |
Annual | 18.0 | 17.5 | 16.6 | 20.1 | 17.0 | 18.9 | 17.8 |
Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional | |
---|---|---|---|---|---|---|---|
Tmin (°C/10a) | |||||||
Wheat growing season | 0.68 * | 0.26 * | 0.53 * | 0.37 * | 0.41 * | 0.53 * | 0.44 |
Maize growing season | 0.53 * | 0.14 * | 0.32 * | 0.17 * | 0.21 * | 0.28 * | 0.24 |
Annual | 0.64 * | 0.22 * | 0.46 * | 0.30 * | 0.34 * | 0.42 * | 0.37 |
Tmax (°C/10a) | |||||||
Wheat growing season | 0.25 * | 0.36 * | 0.23 * | 0.23 * | 0.24 * | 0.20 * | 0.23 |
Maize growing season | 0.19 * | 0.23 * | 0.12 * | −0.08 | 0.08 | 0.02 | 0.04 |
Annual | 0.25 * | 0.32 * | 0.17 * | 0.10 * | 0.18 * | 0.11 * | 0.15 |
R (MJ/day/m2) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 13.6 | 13.4 | 13.6 | 12.9 | 14.0 | 13.4 | 13.5 |
Maize growing season | 18.0 | 18.2 | 18.2 | 17.1 | 18.1 | 17.7 | 17.8 |
Annual | 15.5 | 15.5 | 15.6 | 14.7 | 15.8 | 15.3 | 15.4 |
R (MJ/day/m2/10a) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | −0.18 * | −0.28 * | −0.19 * | −0.20 * | −0.20 * | −0.25 * | −0.20 * |
Maize growing season | −0.54 * | −0.65 * | −0.42 * | −0.58 * | −0.4 * | −0.56 * | −0.48 * |
Annual | −0.30 * | −0.43 * | −0.26 * | −0.33 * | −0.26 * | −0.35 * | −0.28 * |
P (mm) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 99.7 | 109.8 | 108.3 | 260.8 | 185.6 | 138.7 | 176.4 |
Maize growing season | 445.3 | 441.4 | 412.5 | 470.7 | 507.4 | 431.7 | 458.0 |
Annual | 545.0 | 551.2 | 520.7 | 730.8 | 688.1 | 570.4 | 632.9 |
P (mm/10a) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 12.16 * | 8.46 * | 6.84 * | 4.01 | 6.69 | 6.94 * | 6.85 * |
Maize growing season | −19.38 | −20.53 * | −17.32 * | −2.43 | −17.65 | −14.72 * | −9.63 * |
Annual | −4.95 | −12.59 | −6.93 | 6.05 | −9.68 | −5.69 | −2.98 |
ET0 (mm) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 571.2 | 569.3 | 508.6 | 531.9 | 552.8 | 545.9 | 531.2 |
Maize growing season | 515.7 | 538.3 | 500.2 | 497.4 | 487.0 | 513.8 | 497.4 |
Annual | 1086.9 | 1107.6 | 1008.8 | 1028.1 | 1032.0 | 1059.8 | 1026.1 |
ET0 (mm/10a) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 4.54 | 2.96 | −4.06 * | −0.85 | −3.07 | −5.24 | −2.44 |
Maize growing season | −0.01 | −9.58 * | −6.32 * | −15.71 * | −7.12 * | −11.35 * | −8.85 * |
Annual | 3.53 | −7.43 | −10.73 * | −17.44 * | −10.58 * | −17.49 * | −12.04 * |
AI | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 0.18 | 0.20 | 0.22 | 0.51 | 0.35 | 0.26 | 0.34 |
Maize growing season | 0.88 | 0.83 | 0.84 | 0.97 | 1.08 | 0.86 | 0.95 |
Annual | 0.51 | 0.50 | 0.52 | 0.73 | 0.68 | 0.55 | 0.63 |
AI (/10a) | Beijing | Tianjin | Hebei | Henan | Shandong | Funnel Area | Regional |
---|---|---|---|---|---|---|---|
Wheat growing season | 0.019 * | 0.013 * | 0.015 * | 0.008 | 0.013 | 0.016 * | 0.013 * |
Maize growing season | −0.04 | −0.025 | −0.024 | 0.024 | −0.027 | −0.008 | −0.004 |
Annual | −0.009 | −0.008 | 0.000 | 0.017 | −0.005 | 0.004 | 0.005 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ti, J.; Yang, Y.; Yin, X.; Liang, J.; Pu, L.; Jiang, Y.; Wen, X.; Chen, F. Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015. Water 2018, 10, 789. https://doi.org/10.3390/w10060789
Ti J, Yang Y, Yin X, Liang J, Pu L, Jiang Y, Wen X, Chen F. Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015. Water. 2018; 10(6):789. https://doi.org/10.3390/w10060789
Chicago/Turabian StyleTi, Jinsong, Yuhao Yang, Xiaogang Yin, Jing Liang, Liangliang Pu, Yulin Jiang, Xinya Wen, and Fu Chen. 2018. "Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015" Water 10, no. 6: 789. https://doi.org/10.3390/w10060789
APA StyleTi, J., Yang, Y., Yin, X., Liang, J., Pu, L., Jiang, Y., Wen, X., & Chen, F. (2018). Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015. Water, 10(6), 789. https://doi.org/10.3390/w10060789