Evaluation and Bias Correction of Satellite-Based Rainfall Estimates for Modelling Flash Floods over the Mediterranean region: Application to Karpuz River Basin, Turkey
Abstract
:1. Introduction
2. Study Area, Datasets and Hydrologic Model
2.1. Study Area
2.2. Satellite-Based and Rain Gauge-Based Precipitation Datasets
2.3. Hydrologic Model Description and Implementation
3. Methodology
3.1. Comparison of GSMaP Product with Rain Gauge Dataset
3.1.1. Evaluation Statistics
- The correlation coefficient (R, Equation (2)) refers to the agreement between satellite-based rainfall and gauge-based rainfall. R ranges between −1 and +1. The value of +1 indicates a perfect positive fit, in other words, a perfect linear correlation.
- The Nash-Sutcliffe efficiency (NSE, Equation (4)) is a normalized indicator that determines the relative magnitude of the residual variance (“noise”) compared to the observed data variance (“information”) [75]. NSE point out how well the satellite estimates match the rain gauge estimates, and it ranges between negative infinity and unity; the latter being the best score.
- Percent bias (PBIAS; Equation (5)) indicates the average tendency of the satellite-based rainfall fields to be larger or smaller than the rain gauges; the best value is 0.0; negative (positive) values indicate an underestimation (overestimation) by GSMaP [76].
3.1.2. Bias Correction of the GSMaP Rainfall
3.2. Calibration and Performance Assessment of the Hydrologic Model
4. Results
4.1. Comparison of the GSMaP Product with Rain Gauge Dataset
4.1.1. Evaluation for Different Rainfall Intensity Thresholds
4.1.2. Temporal Analysis over the Whole Study Area
4.1.3. Wet Season and Extreme Events
4.1.4. Elevation Zones
4.1.5. Point vs. Grid Scale Rainfall Comparison
4.1.6. Bias Correction of GSMaP Product and Spatial Distribution of Rainfall over the Study Area
4.2. Flash Floods Modeling at Karpuz River Basin
Analysis of the Hydrologic Model Performance
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Data Product | ftp | Spatio-Temporal Resolution | Available Data |
---|---|---|---|
Standard gauges (v5) | ftp://hokusai.eorc.jaxa.jp/standard_gauge/v5/hourly/ | 0.1° × 0.1°, Hourly | 2000/03–2010/11 |
reanalysis gauge (v6) | ftp://hokusai.eorc.jaxa.jp/reanalysis_gauge/v6/gauge_hr/ | 0.1° × 0.1°, Hourly | 2011/01–2014/02 |
Real time | ftp://hokusai.eorc.jaxa.jp/realtime/archive/ | 0.1° × 0.1°, Hourly | 2008/10–2016/02 |
Station Name | Station ID | Start Year | End Year | Latitude | Longitude | Elevation (m) |
---|---|---|---|---|---|---|
Antalya | 17300 | 1965 | 2015 | 36.91 | 30.80 | 50 |
Gazipasa | 17974 | 1970 | 2015 | 36.26 | 32.31 | 21 |
Manavgat | 17954 | 1965 | 2015 | 36.78 | 31.43 | 38 |
Alanya | 17310 | 1965 | 2015 | 36.55 | 31.98 | 5.88 |
Ibradi | 27 | 2007 | 2015 | 37.09 | 31.59 | 1036 |
Time Scale | Parameters | Time Period | Threshold | ||||
---|---|---|---|---|---|---|---|
0.0 mm | 1 mm | 2 mm | 5 mm | 10 mm | |||
Daily | R | 2007–2013 | 0.81 | 0.81 | 0.81 | 0.80 | 0.78 |
Wet | 0.81 | 0.81 | 0.81 | 0.80 | 0.78 | ||
Dry | 0.83 | 0.83 | 0.83 | 0.82 | 0.79 | ||
RMSE (mm) | 2007–2013 | 6.97 | 6.97 | 7.00 | 7.10 | 7.32 | |
Wet | 6.97 | 6.97 | 7.00 | 7.10 | 7.32 | ||
Dry | 1.43 | 1.46 | 1.41 | 1.24 | 0.98 | ||
NSE | 2007–2013 | 0.58 | 0.57 | 0.57 | 0.56 | 0.53 | |
Wet | 0.59 | 0.59 | 0.59 | 0.57 | 0.55 | ||
Dry | −0.37 | −0.40 | −0.34 | −0.14 | −0.32 | ||
PBIAS (%) | 2007–2013 | −55.83 | −56.44 | −58.12 | −62.73 | −65.84 | |
Wet | −55.83 | −56.44 | −58.12 | −62.73 | −65.84 | ||
Dry | 260.73 | 278.89 | 254.03 | 259.44 | 619.41 | ||
POD | 2007–2013 | 0.91 | 0.74 | 0.69 | 0.59 | 0.44 | |
Wet | 0.83 | 0.74 | 0.69 | 0.60 | 0.45 | ||
Dry | 0.87 | 0.73 | 0.68 | 0.58 | 0.43 | ||
FAR | 2007–2013 | 0.30 | 0.37 | 0.33 | 0.27 | 0.27 | |
Wet | 0.24 | 0.28 | 0.25 | 0.21 | 0.22 | ||
Dry | 0.41 | 0.55 | 0.51 | 0.44 | 0.44 | ||
Monthly | R | 2007–2013 | 0.89 | 0.89 | 0.89 | 0.89 | 0.87 |
Wet | 0.86 | 0.86 | 0.86 | 0.85 | 0.84 | ||
Dry | 0.89 | 0.89 | 0.88 | 0.87 | 0.83 | ||
RMSE (mm) | 2007–2013 | 94.89 | 95.26 | 96.14 | 98.48 | 101.70 | |
Wet | 860.13 | 863.24 | 871.01 | 891.60 | 920.14 | ||
Dry | 128.27 | 130.73 | 133.36 | 140.64 | 148.85 | ||
NSE | 2007–2013 | 0.45 | 0.44 | 0.43 | 0.39 | 0.31 | |
Wet | 0.29 | 0.28 | 0.27 | 0.22 | 0.13 | ||
Dry | 0.95 | 0.95 | 0.94 | 0.94 | 0.92 | ||
PBIAS (%) | 2007–2013 | −47.14 | −48.23 | −49.72 | −53.99 | −60.75 | |
Wet | −53.63 | −54.22 | −55.17 | −58.29 | −60.75 | ||
Dry | −8.96 | −12.65 | −16.90 | −27.04 | −60.75 |
References
- Fattorelli, S.; Dalla Fontana, G.; Da Ros, D. Flood hazard assessment and mitigation. In Floods and landslides: Integrated Risk Assessment; Springer: Berlin/Heidelberg, Germany, 1999; pp. 19–38. [Google Scholar]
- Creutin, J.D.; Borga, M.; Gruntfest, E.; Lutoff, C.; Zoccatelli, D.; Ruin, I. A space and time framework for analyzing human anticipation of flash floods. J. Hydrol. 2013, 482, 14–24. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Abdallah, G.; El Bihery, M.; Bauwens, W.; Huygens, M. An early warning system for flash floods in hyper-arid egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Ducrocq, V.; Braud, I.; Davolio, S.; Ferretti, R.; Flamant, C.; Jansa, A.; Kalthoff, N.; Richard, E.; Taupier-Letage, I.; Ayral, P.A.; et al. Hymex-sop1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern mediterranean. Bull. Am. Meteorol. Soc. 2014, 95, 1083–1100. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.D. Flash flood forecasting, warning and risk management: The hydrate project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Borga, M.; Tonelli, F.; Moore, R.J.; Andrieu, H. Long-term assessment of bias adjustment in radar rainfall estimation. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Mallick, K.; Patel, N.; Parihar, J. Regional clear sky evapotranspiration over agricultural land using remote sensing data from indian geostationary meteorological satellite. J. Hydrol. 2010, 387, 65–80. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. Trmm and Other Data Precipitation Data Set Documentation; NASA: Greenbelt, MD, USA, 2013; Volume 28.
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, bias-corrected cmorph global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of persiann system satellite–based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. Persiann-cdr: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; Iwanami, K. Global precipitation map using satellite-borne microwave radiometers by the gsmap project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.I.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A kalman filter approach to the global satellite mapping of precipitation (gsmap) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Stocker, E.F.; Tan, J. V04 Imerg Final Run Release Notes; NASA Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2017.
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Hossain, F.; Anagnostou, E.N. A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1511–1522. [Google Scholar] [CrossRef]
- Vila, D.A.; De Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental south america. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Dinku, T.; Hailemariam, K.; Maidment, R.; Tarnavsky, E.; Connor, S. Combined use of satellite estimates and rain gauge observations to generate high-quality historical rainfall time series over ethiopia. Int. J. Climatol. 2014, 34, 2489–2504. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of trmm rainfall climatology over saudi arabia during 1998–2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Ngo-Duc, T.; Matsumoto, J.; Kamimera, H.; Bui, H.-H. Monthly adjustment of global satellite mapping of precipitation (gsmap) data over the vugia–thubon river basin in central vietnam using an artificial neural network. Hydrol. Res. Lett. 2013, 7, 85–90. [Google Scholar] [CrossRef]
- Álvarez-Villa, O.D.; Vélez, J.I.; Poveda, G. Improved long-term mean annual rainfall fields for colombia. Int. J. Climatol. 2011, 31, 2194–2212. [Google Scholar] [CrossRef]
- Manz, B.; Buytaert, W.; Zulkafli, Z.; Lavado, W.; Willems, B.; Robles, L.A.; Rodríguez-Sánchez, J.P. High-resolution satellite-gauge merged precipitation climatologies of the tropical andes. J. Geophys. Res. Atmos. 2016, 121, 1190–1207. [Google Scholar] [CrossRef]
- Gourley, J.J.; Hong, Y.; Flamig, Z.L.; Wang, J.; Vergara, H.; Anagnostou, E.N. Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on ft. Cobb basin, oklahoma. J. Hydrometeorol. 2011, 12, 973–988. [Google Scholar] [CrossRef]
- Tauro, F.; Selker, J.; van de Giesen, N.; Abrate, T.; Uijlenhoet, R.; Porfiri, M.; Manfreda, S.; Caylor, K.; Moramarco, T.; Benveniste, J. Measurements and observations in the xxi century (moxxi): Innovation and multi-disciplinarity to sense the hydrological cycle. Hydrol. Sci. J. 2018, 63, 169–196. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Hsu, K.L.; Chang, F.J.; Hong, Y.; Sorooshian, S. Merging multiple precipitation sources for flash flood forecasting. J. Hydrol. 2007, 340, 183–196. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Win, K.W.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of gpm and trmm multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Zoccatelli, D.; Borga, M. Error analysis of satellite precipitation-driven modeling of flood events in complex alpine terrain. Remote Sens. 2016, 8, 293. [Google Scholar] [CrossRef]
- Kim, J.P.; Jung, I.W.; Park, K.W.; Yoon, S.K.; Lee, D. Hydrological utility and uncertainty of multi-satellite precipitation products in the mountainous region of south korea. Remote Sens. 2016, 8, 608. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Using high-resolution satellite rainfall products to simulate a major flash flood event in northern italy. J. Hydrometeorol. 2013, 14, 171–185. [Google Scholar] [CrossRef]
- Stampoulis, D.; Anagnostou, E.N.; Nikolopoulos, E.I. Assessment of high-resolution satellite-based rainfall estimates over the mediterranean during heavy precipitation events. J. Hydrometeorol. 2013, 14, 1500–1514. [Google Scholar] [CrossRef]
- Ciabatta, L.; Brocca, L.; Massari, C.; Moramarco, T.; Gabellani, S.; Puca, S.; Wagner, W. Rainfall-runoff modelling by using sm2rain-derived and state-of-the-art satellite rainfall products over italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 163–173. [Google Scholar] [CrossRef]
- Milewski, A.; Elkadiri, R.; Durham, M. Assessment and comparison of tmpa satellite precipitation products in varying climatic and topographic regimes in morocco. Remote Sens. 2015, 7, 5697–5717. [Google Scholar] [CrossRef]
- Tramblay, Y.; Thiemig, V.; Dezetter, A.; Hanich, L. Evaluation of satellite-based rainfall products for hydrological modelling in morocco. Hydrol. Sci. J. 2016, 61, 2509–2519. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef]
- Yucel, I. Assessment of a flash flood event using different precipitation datasets. Nat. Hazards 2015, 79, 1889–1911. [Google Scholar] [CrossRef]
- Whiteaker, T.L.; Robayo, O.; Maidment, D.R.; Obenour, D. From a nexrad rainfall map to a flood inundation map. J. Hydrol. Eng. 2006, 11, 37–45. [Google Scholar] [CrossRef]
- Biancamaria, S.; Bates, P.D.; Boone, A.; Mognard, N.M. Large-scale coupled hydrologic and hydraulic modelling of the ob river in siberia. J. Hydrol. 2009, 379, 136–150. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Warnock, A.; Ivanov, V.Y.; Katopodes, N.D. Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Adv. Water Resour. 2012, 37, 104–126. [Google Scholar] [CrossRef]
- Caviedes-Voullième, D.; García-Navarro, P.; Murillo, J. Influence of mesh structure on 2d full shallow water equations and scs curve number simulation of rainfall/runoff events. J. Hydrol. 2012, 448, 39–59. [Google Scholar] [CrossRef]
- Simons, F.; Busse, T.; Hou, J.; Özgen, I.; Hinkelmann, R. A model for overland flow and associated processes within the hydroinformatics modelling system. J. Hydroinform. 2014, 16, 375–391. [Google Scholar] [CrossRef]
- Liang, D.; Özgen, I.; Hinkelmann, R.; Xiao, Y.; Chen, J.M. Shallow water simulation of overland flows in idealised catchments. Environ. Earth Sci. 2015, 74, 7307–7318. [Google Scholar] [CrossRef] [Green Version]
- Laganier, O.; Ayral, P.; Salze, D.; Sauvagnargues, S. A coupling of hydrologic and hydraulic models appropriate for the fast floods of the gardon river basin (france). Nat. Hazards Earth Syst. Sci. 2014, 14, 2899. [Google Scholar] [CrossRef]
- Habert, J.; Ricci, S.; Piacentini, A.; Jonville, G.; Le Pape, E.; Thual, O.; Goutal, N.; Zaoui, F.; Ata, R. Estimation of lateral inflows using data assimilation in the context of real-time flood forecasting for the marne catchment in france. In Advances in Hydroinformatics; Springer: Berlin, Germany, 2014; pp. 93–105. [Google Scholar]
- Özgüler, H. Global Climate Change and Its Potential Impacts on Turkish Water Resources; DSİ Bulletin 2002, No: 491–492 (May–June 2002); DSİ: Ankara, Turkey, 2002. (In Turkish)
- Llasat, M.C.; Llasat-Botija, M.; Prat, M.A.; Porcú, F.; Price, C.; Mugnai, A.; Yair, Y. High-impact floods and flash floods in mediterranean countries: The flash preliminary database. Adv. Geosci. 2010, 23, 47–55. [Google Scholar] [CrossRef]
- Sabanci, S. Human impact on natural vegetation: A case study of karpuz stream basin (east of manavgat). In Environment and Ecology at the Beginning of 21st Century; St. Kliment Ohridski University Press: Sofia, Bulgaria, 2015; pp. 355–366. [Google Scholar]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Kachi, M.; Kubota, T.; Ushio, T.; Shige, S.; Kida, S.; Aonashi, K.; Okamoto, K.I.; Oki, R. Development and utilization of “jaxa global rainfall watch” system based on combined microwave and infrared radiometers aboard satellites. IEEJ Trans. Fundam. Mater. 2011, 131, 729–737. [Google Scholar] [CrossRef]
- Kida, S.; Kubota, T.; Kachi, M.; Oki, R.; Iguchi, T.; Takayabu, Y.N. Reduction of Discontinuity Due to the Orbit Boost in Trmm Precipitation Radar Product for Climate Studies. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2013; pp. 644–647. [Google Scholar]
- Shige, S.; Kida, S.; Ashiwake, H.; Kubota, T.; Aonashi, K. Improvement of tmi rain retrievals in mountainous areas. J. Appl. Meteorol.Climatol. 2013, 52, 242–254. [Google Scholar] [CrossRef]
- Shige, S.; Yamamoto, M.K.; Taniguchi, A. Improvement of tmi rain retrieval over the indian subcontinent. Remote Sens. Terr. Water Cycle 2014, 206, 27–42. [Google Scholar]
- Kojiri, T.; Tokai, A.; Kinai, Y. Assessment of river basin environment through simulation with water quality and quantity. Annu. Disaster Prev. Res. Inst. Kyoto Univ. 1998, 41, 119–134. [Google Scholar]
- Saber, M.; Hamaguchi, T.; Kojiri, T.; Tanaka, K. Flash flooding simulation using hydrological modeling of wadi basins at nile river based on satellite remote sensing data. Annu. Disaster Prev. Res. Inst. 2010, 53, 683–698. [Google Scholar]
- Saber, M. Hydrological Approaches of Wadi System Considering Flash Floods in Arid Regions. Ph.D. Thesis, Graduate School of Engineering, Kyoto University, Kyoto, Japan, 2010. [Google Scholar]
- Saber, M.; Hamaguchi, T.; Kojiri, T.; Tanaka, K.; Sumi, T. A physically based distributed hydrological model of wadi system to simulate flash floods in arid regions. Arab. J. Geosci. 2015, 8, 143–160. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.; Saber, M.; Kantoush, S.A.; Khalil, M.F.; Sumi, T.; Sefelnasr, A.M. A hydrological and geomorphometric approach to understanding the generation of wadi flash floods. Water 2017, 9, 553. [Google Scholar] [CrossRef]
- Sumi, T.; Saber, M.; Kantoush, S.A. Japan-egypt hydro network: Modern methodologies for integrated water resources management in egypt. J. Disaster Res. 2013, 8, 177–178. [Google Scholar]
- Abdel-Fattah, M.; Kantoush, S.; Sumi, T. Integrated management of flash flood in wadi system of egypt: Disaster prevention and water harvesting. Annu. Disasters Prev. Res. Inst. Kyoto Univ. 2015, 58, 485–496. [Google Scholar]
- Kojiri, T.; Hamaguchi, T.; Ode, M. Assessment of global warming impacts on water resources and ecology of a river basin in japan. J. Hydro-Environ. Res. 2008, 1, 164–175. [Google Scholar] [CrossRef]
- Sato, Y.; Kojiri, T.; Michihiro, Y.; Suzuki, Y.; Nakakita, E. Assessment of climate change impacts on river discharge in japan using the super-high-resolution mri-agcm. Hydrol. Process. 2013, 27, 3264–3279. [Google Scholar] [CrossRef]
- USDA, SCS. Hydrology Section 4, Chapters 4–10. In National Engineering Handbook; Government Printing Office: Washington, DC, USA, 1972. [Google Scholar]
- Walters, M.O. Transmission losses in arid region. J. Hydraul. Eng. 1990, 116, 127–138. [Google Scholar] [CrossRef]
- Saber, M.; Hamagutchi, T.; Kojiri, T.; Tanaka, K. Hydrological modeling of distributed runoff throughout comparative study between some arabian wadi basins. Annu. J. Hydraul. Eng. JSCE 2010, 54, 85–90. [Google Scholar]
- Sumi, T.; Saber, M.; Kantoush, S.A. Japan-egypt hydro network: Science and technology collaborative research for flash flood management. J. Disaster Res. 2013, 8, 28–36. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J. Aster Global Digital Elevation Model Version 2—Summary of Validation Results; Earth Resources Observation and Science (EROS) Center, NASA: Washington, DC, USA, 2011; p. 27.
- USGS. Global Land Cover Characterization (GLCC). Available online: https://lta.cr.usgs.gov/GLCC (accessed on 1 November 2015).
- Han, D.; Bray, M. Automated thiessen polygon generation. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Chu, T.; Shirmohammadi, A. Evaluation of the swat model's hydrology component in the piedmont physiographic region of maryland. Trans. ASAE 2004, 47, 1057–1073. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.; Demissie, M. Hydrological modeling of the iroquois river watershed using hspf and swat. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Wardah, T.; Bakar, S.A.; Bardossy, A.; Maznorizan, M. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting. J. Hydrol. 2008, 356, 283–298. [Google Scholar] [CrossRef]
- Tian, Y.; Huffman, G.J.; Adler, R.F.; Tang, L.; Sapiano, M.; Maggioni, V.; Wu, H. Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett. 2013, 40, 2060–2065. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and nse performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Stampoulis, D.; Anagnostou, E.N. Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeorol. 2012, 13, 588–603. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.; Ropelewski, C. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Romilly, T.G.; Gebremichael, M. Evaluation of satellite rainfall estimates over ethiopian river basins. Hydrol. Earth Syst. Sci. 2011, 15, 1505. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Anders, A.M. Very high resolution precipitation climatologies from the tropical rainfall measuring mission precipitation radar. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Westerberg, I.; Guerrero, J.-L.; Younger, P.; Beven, K.; Seibert, J.; Halldin, S.; Freer, J.; Xu, C.-Y. Calibration of hydrological models using flow-duration curves. Hydrol. Earth Syst. Sci. 2011, 15, 2205. [Google Scholar] [CrossRef] [Green Version]
- Sevruk, B. Correction of Precipitation Measurements, Summary Report; Workshop on the Correction of Precipitation Measurements: Zurich, Switzerland, 1985; pp. 13–22. [Google Scholar]
- Hughes, C.; Strangeways, I.; Roberts, A. Field evaluation of two aerodynamic raingauges. Weather 1993, 48, 66–71. [Google Scholar] [CrossRef]
- Hanna, E. How effective are tipping-bucket raingauges? A review. Weather 1995, 50, 336–342. [Google Scholar] [CrossRef]
- Sevruk, B.; Klemm, S. Types of standard precipitation gauges. In Proceedings of the International Workshop on Precipitation Measurement, WMO/IAHS/ETH, St. Moritz, Switzerland, 3–7 December 1989. [Google Scholar]
- Rodda, J.C. The rainfall measurement problem. Proc. IAHS Gen. Assem. Bern IAHS Publ. 1967, 78, 215–231. [Google Scholar]
- Grimaldi, S.; Petroselli, A.; Baldini, L.; Gorgucci, E. Description and preliminary results of a 100 square meter rain gauge. J. Hydrol. 2018, 556, 827–834. [Google Scholar] [CrossRef]
Time Scale | Daily | Monthly | ||
---|---|---|---|---|
Statistics/Elevation Zone | ≥500 m | <500 m | ≥500 m | <500 m |
R | 0.79 | 0.79 | 0.86 | 0.90 |
RMSE (mm) | 6.10 | 1.03 | 81.48 | 15.91 |
NSE | 0.43 | 0.87 | 0.34 | 0.68 |
PBIAS | −62.99 | −36.45 | −53.52 | −28.49 |
POD | 0.79 | 0.83 | ||
FAR | 0.36 | 0.37 |
Time Series | Measures | Thresholds | ||||
---|---|---|---|---|---|---|
0.0 mm | 1 mm | 2 mm | 5 mm | 10 mm | ||
Daily | R | 0.64 | 0.64 | 0.63 | 0.63 | 0.61 |
RMSE | 3.30 | 3.31 | 3.38 | 3.62 | 3.28 | |
NSE | 0.93 | 0.93 | 0.93 | 0.91 | 0.93 | |
PBIAS | −17.94 | −18.32 | −18.49 | −19.78 | −22.41 | |
POD | 0.95 | 0.82 | 0.83 | 0.78 | 0.66 | |
FAR | 0.52 | 0.33 | 0.32 | 0.28 | 0.35 | |
Monthly | R | 0.85 | 0.85 | 0.85 | 0.84 | 0.82 |
RMSE | 58.07 | 58.28 | 58.23 | 59.58 | 60.85 | |
NSE | 0.68 | 0.67 | 0.67 | 0.65 | 0.61 | |
PBIAS | −16.76 | −18.11 | −19.08 | −21.57 | −25.89 |
Statistical Measures | GSMaP before Correction | GSMaP after Correction | |||
---|---|---|---|---|---|
Threshold | |||||
1 mm/day | 0 mm/day | 1 mm/day | 2 mm/day | 10 mm/day | |
R | 0.81 | 0.98 | 0.98 | 0.97 | 0.92 |
RMSE | 6.97 | 1.19 | 1.21 | 1.96 | 3.25 |
NSE | 0.57 | 0.99 | 0.99 | 0.97 | 0.91 |
PBIAS | −56.44 | −5.42 | −4.92 | −4.58 | −25.56 |
POD | 0.74 | 0.85 | 0.88 | 0.88 | 0.62 |
FAR | 0.37 | 0.24 | 0.25 | 0.26 | 0.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, M.; Yilmaz, K.K. Evaluation and Bias Correction of Satellite-Based Rainfall Estimates for Modelling Flash Floods over the Mediterranean region: Application to Karpuz River Basin, Turkey. Water 2018, 10, 657. https://doi.org/10.3390/w10050657
Saber M, Yilmaz KK. Evaluation and Bias Correction of Satellite-Based Rainfall Estimates for Modelling Flash Floods over the Mediterranean region: Application to Karpuz River Basin, Turkey. Water. 2018; 10(5):657. https://doi.org/10.3390/w10050657
Chicago/Turabian StyleSaber, Mohamed, and Koray K. Yilmaz. 2018. "Evaluation and Bias Correction of Satellite-Based Rainfall Estimates for Modelling Flash Floods over the Mediterranean region: Application to Karpuz River Basin, Turkey" Water 10, no. 5: 657. https://doi.org/10.3390/w10050657
APA StyleSaber, M., & Yilmaz, K. K. (2018). Evaluation and Bias Correction of Satellite-Based Rainfall Estimates for Modelling Flash Floods over the Mediterranean region: Application to Karpuz River Basin, Turkey. Water, 10(5), 657. https://doi.org/10.3390/w10050657