Occurrence and Removal of Copper and Aluminum in a Stream Confluence Affected by Acid Mine Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and On-Site Measurements
2.3. Geochemical Analysis
2.4. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Water Parameters
3.2. Anions and Cations
3.3. Dissolved Metals
3.4. Scanning Electron Microscopy (SEM)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Distribution of Aqueous Species in San Francisco River Modeled by PHREEQC
Phase | Saturation Index (SI) | log Ion Activity Product (IAP) | log Equilibrium Constant (KT) at 13.1°C | |
---|---|---|---|---|
Aluminum hydroxide | Al(OH)3 (a) | −5.61 | 5.99 | 11.61 |
Alunite | KAl3(SO4)2(OH)6 | −2.66 | −2.53 | 0.13 |
Anhydrite | CaSO4 | −1.41 | −5.74 | −4.33 |
Iron hydroxide | Fe(OH)3 (a) | −8.58 | −3.69 | 4.89 |
Gibbsite | Al(OH)3 | −2.81 | 5.99 | 8.80 |
Goethite | FeOOH | −3.13 | −3.69 | −0.56 |
Gypsum | CaSO4:2H2O | −1.16 | −5.74 | −4.59 |
H2(g) | H2 | −15.30 | −18.40 | −3.10 |
H2O(g) | H2O | −1.83 | −0.00 | 1.83 |
Halite | NaCl | −9.46 | −7.91 | 1.55 |
Hausmannite | Mn3O4 | −42.42 | 21.68 | 64.10 |
Hematite | Fe2O3 | −4.31 | −7.37 | −3.07 |
Jarosite-K | KFe(SO4)2(OH)6 | −23.32 | −31.58 | −8.26 |
Manganite | MnOOH | −15.57 | 9.77 | 25.34 |
Melanterite | FeSO4:7H2O | −5.63 | −7.99 | −2.37 |
O2(g) | O2 | −56.87 | −59.67 | −2.80 |
Pyrochroite | Mn(OH)2 | -13.06 | 2.14 | 15.20 |
Pyrolusite | MnO2:H2O | −25.96 | 17.40 | 43.36 |
Phase | Saturation Index (SI) | log Ion Activity Product (IAP) | log Equilibrium Constant (KT) at 14.7°C | |
---|---|---|---|---|
Aluminum hydroxide | Al(OH)3 (a) | −3.20 | 8.29 | 11.50 |
Alunite | KAl3(SO4)2(OH)6 | 2.67 | 2.59 | −0.08 |
Anhydrite | CaSO4 | −1.41 | −5.75 | −4.34 |
Iron hydroxide | Fe(OH)3 (a) | −5.80 | −0.91 | 4.89 |
Gibbsite | Al(OH)3 | −0.42 | 8.29 | 8.71 |
Goethite | FeOOH | −0.29 | −0.91 | −0.62 |
Gypsum | CaSO4:2H2O | −1.16 | −5.75 | −4.58 |
H2(g) | H2 | −16.92 | −20.02 | −3.10 |
H2O(g) | H2O | −1.79 | −0.00 | 1.79 |
Halite | NaCl | −8.59 | −7.03 | 1.56 |
Hausmannite | Mn3O4 | −35.56 | 28.11 | 63.67 |
Hematite | Fe2O3 | 1.37 | −1.82 | −3.20 |
Jarosite-K | KFe(SO4)2(OH)6 | −16.64 | −25.03 | −8.39 |
Manganite | MnOOH | −13.16 | 12.18 | 25.34 |
Melanterite | FeSO4:7H2O | −5.35 | −7.69 | −2.34 |
O2(g) | O2 | −53.05 | −55.86 | −2.81 |
Pyrochroite | Mn(OH)2 | −11.46 | 3.74 | 15.20 |
Pyrolusite | MnO2:H2O | −22.46 | 20.62 | 43.09 |
References
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Leiva, E.; Leiva-Aravena, E.; Vargas, I. Acid Water Neutralization Using Microbial Fuel Cells: An Alternative for Acid Mine Drainage Treatment. Water 2016, 8, 536. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Consejo de Monumentos Nacionales de Chile. Fundo Yerba Loca. Available online: http://www.monumentos.cl/monumentos/santuarios-de-la-naturaleza/fundo-yerba-loca (accessed on 15 January 2018).
- Ginocchio, R.; Hepp, J.; Bustamante, E.; Silva, Y.; De la Fuente, L.M.; Cásale, J.F.; De la Harpe, J.P.; Urrestarazu, P.; Anic, V.; Montenegro, G. Importance of water quality on plant abundance and diversity in high-alpine meadows of the Yerba Loca Natural Sanctuary at the Andes of north-central Chile. Rev. Chil. Hist. Nat. 2008, 81, 469–488. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea, Reportes Calidad del Agua; Dirección General de Aguas: Santiago, Chile, 2017. (In Spanish) [Google Scholar]
- Terry, P.A.; Stone, W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 2002, 47, 249–255. [Google Scholar] [CrossRef]
- Lockwood, C.L.; Stewart, D.I.; Mortimer, R.J.G.; Mayes, W.M.; Jarvis, A.P.; Gruiz, K.; Burke, I.T. Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: The importance of soil organic matter. Environ. Sci. Pollut. Res. 2015, 22, 10800–10810. [Google Scholar] [CrossRef] [PubMed]
- Sipos, P.; Németh, T.; Kis, V.K.; Mohai, I. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 2008, 73, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Slaninova, A.; Machova, J.; Svobodova, Z. Fish kill caused by aluminium and iron contamination in a natural pond used for fish rearing: A case report. Vet. Med. 2014, 59, 573–581. [Google Scholar] [CrossRef]
- Ščančar, J.; Stibilj, V.; Milačič, R. Determination of aluminium in Slovenian foodstuffs and its leachability from aluminium-cookware. Food Chem. 2004, 85, 151–157. [Google Scholar] [CrossRef]
- Kvech, S.; Edwards, M. Solubility controls on aluminum in drinking water at relatively low and high pH. Water Res. 2002, 36, 4356–4368. [Google Scholar] [CrossRef]
- Sorenson, J.R.; Campbell, I.R.; Tepper, L.B.; Lingg, R.D. Aluminum in the environment and human health. Environ. Health Perspect. 1974, 8, 3–95. [Google Scholar] [CrossRef] [PubMed]
- Abarca, M.; Guerra, P.; Arce, G.; Montecinos, M.; Escauriaza, C.; Coquery, M.; Pastén, P. Response of suspended sediment particle size distributions to changes in water chemistry at an Andean mountain stream confluence receiving arsenic rich acid drainage. Hydrol. Process. 2017, 31, 296–307. [Google Scholar] [CrossRef]
- Riera, J.; Cánovas, C.R.; Olías, M. Characterization of main AMD inputs to the Odiel River upper reach (SW Spain). Procedia Earth Planet. Sci. 2017, 17, 602–605. [Google Scholar] [CrossRef]
- Schemel, L.E.; Kimball, B.A.; Runkel, R.L.; Cox, M.H. Formation of mixed Al–Fe colloidal sorbent and dissolved-colloidal partitioning of Cu and Zn in the Cement Creek—Animas River Confluence, Silverton, Colorado. Appl. Geochem. 2007, 22, 1467–1484. [Google Scholar] [CrossRef]
- Fuller, C.C.; Davis, J.A. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. Nature 1989, 340, 52–54. [Google Scholar] [CrossRef]
- Casiot, C.; Lebrun, S.; Morin, G.; Bruneel, O.; Personne, J.C.; Elbaz-Poulichet, F. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ. 2005, 347, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Runkel, R.L.; Kimball, B.A. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model. Environ. Sci. Technol. 2002, 36, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Chapman, B.; Jones, D.; Jung, R. Processes controlling metal ion attenuation in acid mine drainage streams. Geochim. Cosmochim. Acta 1983, 47, 1957–1973. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea, Reportes Fluviométricos; Dirección General de Aguas: Santiago, Chile, 2017. (In Spanish) [Google Scholar]
- Jirka, A.M.; Carter, M.J. Reactor digestion method. Anal. Chem. 1975, 47, 1397. [Google Scholar] [CrossRef] [PubMed]
- Celebi, N.; Nadaroglu, H.; Kalkan, E.; Kotan, R. Removal of copper from copper-contaminated river water and aqueous solutions using Methylobacterium extorquens modified Erzurum clayey soil. Arch. Environ. Prot. 2016, 42, 58–69. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Yusta, I.; Diez-Ercilla, M. Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Appl. Geochem. 2011, 26, 1752–1774. [Google Scholar] [CrossRef]
- Ibanez, J.G.; Hernandez-Esparza, M.; Doria-Serrano, C.; Fregoso-Infante, A.; Singh, M.M. Dissolved oxygen in water. In Environmental Chemistry; Springer: New York, NY, USA, 2008; pp. 16–27. [Google Scholar]
- Chile, NCh 409/2005. Norma Oficial de Agua Potable; Instituto Nacional de Normalización: Santiago, Chile, 2005. (In Spanish) [Google Scholar]
- Chile, NCh 1.333/1978. Requisitos de Calidad del Agua para Diferentes Usos; Instituto Nacional de Normalización: Santiago, Chile, 1978. (In Spanish) [Google Scholar]
- Guerra, P.; Gonzalez, C.; Escauriaza, C.; Pizarro, G.; Pasten, P. Incomplete mixing in the fate and transport of arsenic at a river affected by acid drainage. Water Air Soil Pollut. 2016, 227, 73. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Ball, J.W. The geochemical behavior of aluminum in acidified surface waters. Science 1986, 232, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 133–160. [Google Scholar]
- Nordstrom, D.K. The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system Al2O3-SO3-H2O at 298 K. Geochim. Cosmochim. Acta 1982, 46, 681–692. [Google Scholar] [CrossRef]
- Bertsch, P.M.; Parker, D.R. Aqueous polynuclear aluminum species. Environ. Chem. Alum. 1996, 2, 117–168. [Google Scholar]
- Jones, A.M.; Collins, R.N.; Waite, T.D. Mineral species control of aluminum solubility in sulfate-rich acidic waters. Geochim. Cosmochim. Acta 2011, 75, 965–977. [Google Scholar] [CrossRef]
- Carrero, S.; Fernandez-Martinez, A.; Pérez-López, R.; Nieto, J.M. Basaluminite structure and its environmental implications. Procedia Earth Planet. Sci. 2017, 17, 237–240. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Torrentó, C.; Nieto, J.M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta 2006, 70, 4130–4139. [Google Scholar] [CrossRef]
- España, J.S.; Pamo, E.L.; Pastor, E.S.; Andrés, J.R.; Rubí, J.A.M. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt. Aquat. Geochem. 2006, 12, 269–298. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Spencer, K.; Kloas, W.; Toffolon, M.; Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 2016, 541, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Benjamin, M.M.; Leckie, J.O. Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 1981, 79, 209–221. [Google Scholar] [CrossRef]
- Leiva, E.D.; Rámila, C.D.P.; Vargas, I.T.; Escauriaza, C.R.; Bonilla, C.A.; Pizarro, G.E.; Regan, J.M.; Pasten, P.A. Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci. Total Environ. 2014, 466–467, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Gadde, R.R.; Laitinen, H.A. Heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 1974, 46, 2022–2026. [Google Scholar] [CrossRef]
- Ociński, D.; Jacukowicz-Sobala, I.; Mazur, P.; Raczyk, J.; Kociołek-Balawejder, E. Water treatment residuals containing iron and manganese oxides for arsenic removal from water—Characterization of physicochemical properties and adsorption studies. Chem. Eng. J. 2016, 294, 210–221. [Google Scholar] [CrossRef]
- Rajkumar, K.; Ramanathan, A.L.; Behera, P.N. Characterization of clay minerals in the Sundarban mangroves river sediments by SEM/EDS. J. Geol. Soc. India 2012, 80, 429–434. [Google Scholar] [CrossRef]
- Lee, G.; Bigham, J.M.; Faure, G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002, 17, 569–581. [Google Scholar] [CrossRef]
- Matichenkov, V.V.; Bocharnikova, E.A. Chapter 13: The relationship between silicon and soil physical and chemical properties. Stud. Plant Sci. 2001, 8, 209–219. [Google Scholar] [CrossRef]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, N. Genesis and Solution Chemistry of Acid Sulfate Soils in Thailand; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1976; ISBN 902200600X. [Google Scholar]
- Tait, T. Determination of Copper Speciation, Bioavailability and Toxicity in Saltwater Environments. Master’s Thesis, Wilfrid Laurier University, Waterloo, ON, Canada, 2013. [Google Scholar]
- McBride, M.B.; Blasiak, J.J. Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Am. J. 1979, 43, 866. [Google Scholar] [CrossRef]
- Elliott, H.A.; Huang, C.P. Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res. 1981, 15, 849–855. [Google Scholar] [CrossRef]
Sample | Anions (ppm 1) | Cations (ppm 1) | ||||||
---|---|---|---|---|---|---|---|---|
Sulfate | Chloride | Nitrate | Sodium | Potassium | Calcium | Magnesium | ||
San Francisco River before confluence | 5 m | 184.1 | 43.4 | 1.9 | 25.0 | 3.6 | 69.1 | 13.4 |
10 m | 293.2 | 79.9 | 3.2 | 25.1 | 3.6 | 72.0 | 13.9 | |
20 m | 225.1 | 52.6 | 2.9 | 24.7 | 5.4 | 68.5 | 13.6 | |
30 m | 326.1 | 87.4 | 3.9 | 25.1 | 6.5 | 69.5 | 13.3 | |
40 m | 304.9 | 85.7 | 4.5 | 25.2 | 16.6 | 70.1 | 13.5 | |
50 m | 311.2 | 85.0 | 4.5 | 25.3 | 13.2 | 68.4 | 13.8 | |
Yerba Loca Creek | 5 m | 351.9 | 4.5 | 6.0 | 4.2 | 2.8 | 71.7 | 9.3 |
10 m | 405.5 | 4.9 | 3.1 | 4.2 | 2.4 | 72.9 | 9.2 | |
20 m | 503.0 | 4.5 | 1.7 | 4.1 | 6.2 | 71.6 | 9.4 | |
30 m | 297.7 | 2.9 | 1.6 | 4.3 | 1.7 | 70.6 | 9.3 | |
40 m | 507.2 | 4.5 | 2.1 | 4.2 | 2.4 | 69.6 | 9.2 | |
50 m | 341.8 | 3.4 | 1.3 | 4.1 | 2.0 | 71.4 | 9.3 | |
San Francisco River after confluence | 0 m | 318.6 | 3.1 | 1.7 | 4.0 | 3.0 | 70.6 | 14.0 |
5 m | 504.7 | 6.0 | 2.3 | 4.2 | 1.9 | 72.1 | 9.6 | |
10 m | 330.7 | 3.4 | 1.6 | 4.2 | 3.9 | 73.3 | 10.3 | |
20 m | 309.6 | 4.9 | 1.2 | 5.3 | 3.1 | 71.4 | 10.6 | |
30 m | 312.4 | 12.1 | 2.0 | 7.7 | 13.6 | 69.9 | 9.9 | |
40 m | 285.7 | 8.2 | 1.7 | 7.5 | 5.3 | 74.4 | 9.9 | |
50 m | 472.0 | 10.8 | 2.3 | 6.4 | 2.4 | 71.8 | 10.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, C.; Leiva-Aravena, E.; Serrano, J.; Leiva, E. Occurrence and Removal of Copper and Aluminum in a Stream Confluence Affected by Acid Mine Drainage. Water 2018, 10, 516. https://doi.org/10.3390/w10040516
Rodríguez C, Leiva-Aravena E, Serrano J, Leiva E. Occurrence and Removal of Copper and Aluminum in a Stream Confluence Affected by Acid Mine Drainage. Water. 2018; 10(4):516. https://doi.org/10.3390/w10040516
Chicago/Turabian StyleRodríguez, Carolina, Enzo Leiva-Aravena, Jennyfer Serrano, and Eduardo Leiva. 2018. "Occurrence and Removal of Copper and Aluminum in a Stream Confluence Affected by Acid Mine Drainage" Water 10, no. 4: 516. https://doi.org/10.3390/w10040516
APA StyleRodríguez, C., Leiva-Aravena, E., Serrano, J., & Leiva, E. (2018). Occurrence and Removal of Copper and Aluminum in a Stream Confluence Affected by Acid Mine Drainage. Water, 10(4), 516. https://doi.org/10.3390/w10040516