Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Studies
2.3. Numerical Modeling
3. Results and Discussion
3.1. Numerical Studies
3.1.1. Zone of the Transformed Floodplain
3.1.2. Crevasse Splays and Crevasses
3.2. Model Calibration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pierce, A.R.; King, L.S. Spatial dynamics of overbank sedimentation in floodplain systems. Geomorphology 2008, 100, 256–268. [Google Scholar] [CrossRef]
- Falkowski, E. Historia i prognoza rozwoju układu koryta wybranych odcinków rzek nizinnych Polski. Biul. Geol. 1971, 12, 5–121. (In Polish) [Google Scholar]
- Fryirs, K.A.; Brierley, G.J. Geomorphic Analysis of River Systems: An Approach to Reading the Landscape; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 1–8. [Google Scholar]
- Kamykowska, M.; Kaszowski, L.; Krzemień, K. Kartowanie koryt rzecznych. In Struktura Koryt Rzek i Potoków (Studium Metodyczne); Krzemień, K., Ed.; Instytut Geografii i Gospodarki Przestrzennej UJ: Kraków, Poland, 2012; pp. 15–42. ISBN 978-83-88424-82-3. (In Polish) [Google Scholar]
- Falkowska, E.; Falkowski, T. Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics. Earth Surf. Process. Landf. 2015, 40, 876–887. [Google Scholar] [CrossRef]
- Masiello, C.A.; Gallagher, M.E.; Randerson, J.T.; Deco, R.M.; Chadwick, O.A. Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J. Geophys. Res. 2008, 113, G03010. [Google Scholar] [CrossRef]
- Dhivert, E.; Grosbois, C.; Rodrigues, S.; Desmet, M. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France). Sci. Total Environ. 2015, 505, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, D.; Riley, W.J.; Torn, M.S.; Spycher, N.; Maggi, F.; Tang, J.Y. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biol. Biochem. 2017, 107, 244–259. [Google Scholar] [CrossRef]
- Falkowski, T. The application of geomorphological analysis of the Vistula River, Poland in the evaluation of the safety of regulation structures. Acta Geol. Pol. 2007, 57, 377–389. [Google Scholar]
- Falkowski, T. The importance of recognition of polygeny for the rational utilisation of river valleys in Polish Lowland. In Proceedings of the International Symposium Engineering Geology and the Environment, Athens, Greece; A.A. Balkema: Rotterdam, The Netherland, 1997; pp. 107–111. [Google Scholar]
- Falkowski, T. Alluvial bottom geology inferred as a factor controlling channel flow along the Middle Vistula River, Poland. Geol. Q. 2007, 51, 91–101. [Google Scholar]
- Bujakowski, F.; Falkowski, T. Wykorzystanie lotniczego skaningu laserowego do oceny warunków przepływu wód w osadach równi zalewowej. Prz. Geol. 2017, 65, 443–449. (In Polish) [Google Scholar]
- Li, J.; Bristow, C.S. Crevasse splay morphodynamics in a dryland river terminus: Río Colorado in Salar de Uyuni Bolivia. Quat. Int. 2015, 377, 71–82. [Google Scholar] [CrossRef]
- Yuill, B.T.; Khadka, A.K.; Pereira, J.; Allison, M.A.; Meselhe, E.A. Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function. Geomorphology 2016, 259, 12–29. [Google Scholar] [CrossRef]
- Ćwiklińska, M.; Kuźniar, P. Influence of Earlier forms of the Bed of the Middle Vistula River on the Course of Centemporary Floods. In Proceedings of the International Conference Towards Natural Flood Reduction Strategies, Warsaw, Poland, 6–13 September 2003. [Google Scholar]
- Goldschneider, A.A.; Haralampides, K.A.; MacQuarrie, K.T. River sediment and flow characteristics near a bank filtration water supply: Implications for riverbed clogging. J. Hydrol. 2007, 344, 55–69. [Google Scholar] [CrossRef]
- Bowles, C.J.; Cowgill, E. Discovering marine terraces using airborne LiDAR along the Mendocino-Sonoma coast, northern California. Geosphere 2012, 8, 386–402. [Google Scholar] [CrossRef]
- Merritts, D.; Bull, W.B. Interpreting Quaternary uplift rates at the Mendocino triple junction, northern California, from uplifted marine terraces. Geology 1989, 17, 1020–1024. [Google Scholar] [CrossRef]
- Regard, V.; Pedoja, K.; De La Torre, I.; Saillard, M.; Cortés-Aranda, J.; Nexer, M. Geometrical Trends within Sequences of Pleistocene Marine Terraces: Selected Examples from California, Peru, Chile and New-Zealand. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01497422 (accessed on 24 March 2018).
- Alexandrowicz, S.W.; Klimek, K.; Kowalkowski, A.; Mamakowa, K.; Niedziałkowska, E.; Pazdur, M.; Starkel, L. The evolution of the Wisłoka valley near Dębica during the Late Glacial and Holocene. Folia Quat. 1981, 53, 1–91. [Google Scholar]
- Ward, J.V.; Malard, F.; Tockner, K.; Uehlinger, U. Influence of ground water on surface water conditions in a glacial flood plain of the Swiss Alps. Hydrol. Process. 1999, 13, 277–293. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Baum, R.; Wojszczuk, K.; Wawrzynowicz, J. Miejsce i rola rolnictwa precyzyjnego w koncepcji zrównoważonego rozwoju gospodarstw rolnych. Ekon. i Środowisko 2012, 1, 71–83. (In Polish) [Google Scholar]
- Kim, H.-S.; Park, S.-R. Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water 2016, 8, 345. [Google Scholar] [CrossRef]
- Gworek, B.; Dmuchowski, W.; Koda, E.; Marecka, M.; Baczewska, A.H.; Brągoszewska, P.; Sieczka, A.; Osiński, P. Impact of the Municipal SolidWaste Łubna Landfill on Environmental Pollution by Heavy Metals. Water 2016, 8, 470. [Google Scholar] [CrossRef]
- Koda, E.; Osiński, P.; Sieczka, A.; Wychowaniak, D. Areal Distribution of Ammonium Contamination of Soil-Water Environment in the Vicinity of Old Municipal Landfill Site with Vertical Barrier. Water 2015, 7, 2656–2672. [Google Scholar] [CrossRef]
- Caruso, A.; Ridolfi, L.; Boano, F. Impact of watershed topography on hyporheic exchange. Adv. Water Res. 2016, 94, 400–411. [Google Scholar] [CrossRef]
- Dwivedi, D.; Steefel, C.I.; Arora, B.; Bisht, G. Impact of intra-meander hyporheic flow on nitrogen cycling. Procedia Earth Planet. Sci. 2017, 17, 404–407. [Google Scholar] [CrossRef]
- Gruszczyński, T.; Małecki, J. Numerical model of transient filtration for the part of the Vistula valley in the mouth of the Świder river. Geologos 2006, 10, 65–74. (In Polish) [Google Scholar]
- Yang, Q.; Lu, W.; Fang, Y. Numerical modeling of three dimension groundwater flow in Tongliao (China). Procedia Eng. 2011, 24, 638–642. [Google Scholar] [CrossRef]
- Lima, M.L.; Romanelli, A.; Massone, H.E. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed. Sci. Total Environ. 2015, 530–531, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Ghoraba, S.M.; Zyedan, B.A.; Rashwan, I.M.H. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt. Alex. Eng. J. 2013, 52, 197–207. [Google Scholar] [CrossRef]
- Verruijt, A.; Koda, E. Analysis of Pollution Control by Finite Elements. In Water Science and Technology Library; Computational Methods in Water Resources X, Vols 1 And 2; Peters, A., Wittum, G.P., Herrling, B., Meissner, U., Brebbia, C.A., Gray, W.G., Pinder, G.F., Eds.; Kluwer Academic Publisher: Heidelberg, Germany, 1994; Volume 12, pp. 1489–1495. [Google Scholar]
- Koda, E.; Wienclaw, E. Flow and transport modelling in old landfill subsoil with vertical barrier. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Vols 1–5: Geotechnology in Harmony with the Global Environment, Osaka, Japan, 12–16 September 2005; pp. 921–924. [Google Scholar]
- Koda, E. Influence of vertical barrier surrounding old sanitary landfill on eliminating transport of pollutants on the basis of numerical modelling and monitoring results. Pol. J. Environ. Stud. 2012, 21, 929–935. [Google Scholar]
- Koda, E.; Osinski, P.; Kolanka, T. Flow numerical modeling for efficiency assessment of vertical barriers in landfills. In Coupled Phenomena in Environmental Geotechnics: From Theoretical and Experimental Research to Practical Applications, Proceedings of International Symposium TC215 ISSMGE, Torino, Italy, 1–3 July 2013; Manassero, M., Dominijanni, A., Foti, S., Musso, G., Eds.; CRC Press: London, UK, 2013; pp. 693–698. [Google Scholar]
- Szczepański, A. Prognozowanie Wydajności i Warunków Eksploatacji wód Podziemnych Metodą Analogii Hydraulicznych; Prace Geologiczne, nr 81; Wydawnictwa Geologiczne: Warszawa, Poland, 1974. (In Polish) [Google Scholar]
- Małecki, J.J.; Nawalany, M.; Witczak, S.; Gruszczyński, T. Wyznaczanie Parametrów Migracji Zanieczyszczeń w Ośrodku Porowatym Dla Potrzeb Badań Hydrogeologicznych i Ochrony Środowiska. Poradnik Metodyczny; Uniwersytet Warszawski, Wydział Geologii: Warszawa, Poland, 2006. (In Polish) [Google Scholar]
- Bradbury, K.R.; Gotkowitz, M.B.; Hart, D.J.; Eaton, T.T.; Cherry, J.A.; Parker, B.L.; Borchardt, M.A. Contaminant Transport Through Aquitards: Technical Guidance for Aquitard Assessment; Awwa Research Foundation: Denver, CO, USA, 2006. [Google Scholar]
- Dąbrowski, S.; Kapuściński, J.; Nowicki, K.; Przybyłek, J.; Szczepański, A. Metodyka Modelowania Matematycznego w Badaniach i Obliczeniach Hydrogeologicznych—Poradnik Metodyczny; Ministerstwo Środowiska: Poznań, Poland, 2010. (In Polish) [Google Scholar]
- Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhães, W.F.; Vianna, M.N. Contaminant transport in aquifers: “Improving the determination of model parameters”. In Application of Isotope Techniques to Investigate Groundwater Pollution; IAEA-TECDOC-1046; International Atomic Energy Agency: Vienna, Austria, 1998. [Google Scholar]
- Sieczka, A.; Koda, E. Kinetic and equilibrium studies of sorption of ammonium in the soil-water environment in agricultural areas of Central Poland. Appl. Sci. 2016, 6, 269. [Google Scholar] [CrossRef]
- Sieczka, A.; Koda, E. Identification of Nitrogen Compounds Sorption Parameters in the Soil-Water Environment of a Column Experiment. Ochr. Srodowiska 2016, 38, 29–34. (In Polish) [Google Scholar]
- Fronczyk, J.; Sieczka, A.; Lech, M.; Radziemska, M.; Lechowicz, Z. Transport of nitrogen compounds through subsoils in agricultural areas: Column tests. Pol. J. Environ. Stud. 2016, 25, 1505–1514. [Google Scholar] [CrossRef]
- Sieczka, A.; Koda, E. Evaluation of chlorides transport parameters in natural soils based on laboratory studies. In MendelNet 2017, Proceedings of 24th International PhD Students Conference; Cerkal, R., Brezinová Belcredi, N., Prokešová, L., Vacek, P., Eds.; Mendel University in Brno, Faculty of AgriSciences: Brno, Czech Republic, 2017; Volume 24, pp. 921–926. ISBN 978-80-7509-529-9. [Google Scholar]
- Falkowski, T.; Ostrowski, P.; Siwicki, P.; Brach, M. Channel morphology changes and their relationship to valley bottom geology and human interventions; a case study from the Vistula Valley in Warsaw, Poland. Geomorphology 2017, 297, 100–111. [Google Scholar] [CrossRef]
- Regulation of the Minister of Environment Dated 21 December 2015 on the Criteria and Method of Evaluating the Underground Water Condition (Journal of Laws 2016, Item 85). Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160000085 (accessed on 23 March 2018).
- PN-EN ISO 5667-3:2013-05. Jakość Wody—Pobieranie Próbek—Część 3: Utrwalanie i Postępowanie z Próbkami Wody; Polski Komitet Normalizacyjny: Warszawa, Poland, 2013. (In Polish) [Google Scholar]
- PN-ISO 5667-11:2004. Jakość Wody—Pobieranie Próbek—Część 11: Wytyczne Dotyczące Pobierania Próbek Wód Podziemnych; Polski Komitet Normalizacyjny: Warszawa, Poland, 2004. (In Polish) [Google Scholar]
- Nielsen, D.M. Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- PN-EN ISO 14688-1:2006. Badania Geotechniczne—Oznaczanie i Klasyfikowanie Gruntów—Część 1: Oznaczanie i opis; Polski Komitet Normalizacyjny: Warszawa, Poland, 2006. (In Polish) [Google Scholar]
- PN-B-02480:1986. Grunty Budowlane—Określenia, Symbole, Podział i opis Gruntów; Polski Komitet Normalizacyjny: Warszawa, Poland, 1986. (In Polish) [Google Scholar]
- PN-88/B-04481. Grunty Budowlane—Badania Próbek Gruntu; Polski Komitet Normalizacyjny: Warszawa, Poland, 1988. (In Polish) [Google Scholar]
- ASTM D5084-00. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter; ASTM International: West Conshohocken, PA, USA, 2001. [Google Scholar]
- Bowders, J.; Daniel, D.E. Hydraulic conductivity of compacted clay to dilute organic compounds. ASCE J. Geotech. Eng. 1987, 113, 1432–1448. [Google Scholar] [CrossRef]
- Marciniak, M.; Małoszewski, P.; Okońska, M. Wpływ efektu skali eksperymentu kolumnowego na identyfikację parametrów migracji znaczników metodą rozwiązań analitycznych i modelowania numerycznego. Geologos 2006, 10, 167–187. [Google Scholar]
- PN-ISO 9297: 1994. Jakość Wody—Oznaczanie Chlorków—Metoda Miareczkowania Azotanem Srebra w Obecności Chromianu Jako Wskaźnika (Metoda Mohra); Polski Komitet Normalizacyjny: Warszawa, Poland, 1994. (In Polish) [Google Scholar]
- Water Analysis Handbook, 7th ed.; Nitrate Cadmium Reduction Method 8171; Hach Company: Loveland, CO, USA, 2012.
- Macioszczyk, A. (Ed.) Podstawy Hydrogeologii Stosowanej; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006. (In Polish) [Google Scholar]
- Zhu, C.; Anderson, G. Environmental Applications of Geochemical Modeling; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; A.A. Balkema: Rotterdam, The Netherlands, 1999. [Google Scholar]
- Gelhar, L.W. Critical review of data on field scale dispersion in aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Patil, S.B.; Chore, H.S. Contaminant transport through porous media: An overview of experimental and numerical studies. Adv. Environ. Res. 2014, 3, 45–69. [Google Scholar] [CrossRef]
- Almasri, M.N.; Kaluarachchi, J.J. Modeling nitrate contamination of groundwater in agricultural watersheds. J. Hydrol. 2007, 343, 211–229. [Google Scholar] [CrossRef]
- Bieciński, P.A. Nowyj metod opredelenija koefficienta wodootdaczi wodonosnych płastow. Gidrotehn. i Melior. 1960, 6. [Google Scholar]
- Batu, V. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Frind, E.; Duynisveld, W.; Strebel, O.; Boettcher, O. Modeling of multicomponent transport with microbial transformation in ground water. The Fuhrberg case. Water Resour. Res. 1990, 26, 1707–1719. [Google Scholar]
- Kozlovsky, E.A. (Ed.) Geology and the Environment vol. I. Water Management and the Geoenvironment; UNEP Nairobi Kenya: Paris, France, 1988. [Google Scholar]
- Uffink, G.J.M. Determination of Denitrification Parameters in Deep Groundwater. A Pilot Study for Several Pumping Stations in the Netherlands; RIVM Report 703717011; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2003. [Google Scholar]
- Eppinger, R.; Walraevens, K. Mobility and removal of nitrate in heterogenous Eocene aquifers. In Groundwater Quality: Remediation and Protection, Presented at the International Conference on Groundwater Quality: Remediation and Protection (GQ 1998); Herbert, M., Kovar, K., Eds.; IAHS Publication, International Association of Hydrological Sciences (IAHS): Wallingford, UK, 1998; Volume 250, pp. 11–18. [Google Scholar]
- Herbert, M.; Kovar, K. Groundwater Quality: Remediation and Protection; International Association of Hydrological Sciences: Wallingford, UK, 1998. [Google Scholar]
- Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992, 28, 1657–1668. [Google Scholar] [CrossRef]
- Toride, N.; Leij, F.J.; van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments; Version 2.1; Research Report No. 137; USDA-ARS U.S. Salinity Laboratory: Riverside, CA, USA, 1999. [Google Scholar]
- Okońska, M.; Kaczmarek, M.; Małoszewski, P.; Marciniak, M. Identyfikacja parametrów filtracji i migracji z wykorzystaniem eksperymentu kolumnowego i optymalizacji w środowisku obliczeniowym MATLAB. In Praktyczne Metody Modelowania Przepływu Wód Podziemnych; Witczak, S., Żurek, A., Eds.; Akademia Górniczo—Hutnicza w Krakowie: Kraków, Poland, 2016; pp. 175–185. (In Polish) [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Pace, M.N.; Mayes, M.A.; Jardine, P.M.; Mehlhorn, T.L.; Zachara, J.M.; Bjornstad, B.N. Quantifying the effects of small-scale heterogeneities on flow and transport in undisturbed cores from the Hanford formation. Vadose Zone J. 2003, 2, 664–676. [Google Scholar] [CrossRef]
- Köhne, J.M.; Schlüter, S.; Vogel, H.-J. Predicting solute transport in structured soil using pore network models. Vadose Zone J. 2011, 10, 1082–1096. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Šimůnek, J.; Leij, F.J.; Toride, N.; Šejna, M. STANMOD: Model use, calibration, and validation. Trans. ASAE Am. Soc. Agric. Eng. 2012, 55, 1353–1366. [Google Scholar] [CrossRef]
- Kanzari, S.; Hachicha, M.; Bouhlila, R. Laboratory Method for Estimating Solute Transport Parameters of Unsaturated Soils. Am. J. Geophys. Geochem. Geosyst. 2015, 1, 149–154. [Google Scholar]
- Bourazanis, G.; Psychogiou, M.; Nikolaou, N. Chloride Transport Parameters Prediction for a Clay-Loam Soil Column. Bull. Environ. Contam. Toxicol. 2017, 98, 378–384. [Google Scholar] [CrossRef] [PubMed]
- MODFLOW and Related Programs. Available online: Https://water.usgs.gov/ogw/modflow/ (accessed on 24 January 2018).
- Zheng, C.; Wang, P.P. MT3DMS. A Modular Three-Dimensional Multispecies Transport Model for a Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; U.S. Army of Corps of Engineers: Washington, DC, USA, 1999. [Google Scholar]
- Wierzbicki, G.; Ostrowski, P.; Mazgajski, M.; Bujakowski, F. Using VHR multispectral remote sensing and LIDAR data to determine the geomorphological effects of overbank flow on a floodplain (the Vistula River, Poland). Geomorphology 2013, 183, 73–81. [Google Scholar] [CrossRef]
- Pazdro, Z.; Kozerski, B. Hydrogeologia Ogólna; Wydawnictwa Geologiczne: Warszawa, Poland, 1990. (In Polish) [Google Scholar]
- Duda, R.; Witczak, S.; Żurek, A. Mapa Wrażliwości Wód Podziemnych Polski na Zanieczyszczenie 1:500 000. Metodyka i Objaśnienia Tekstowe; Ministerstwo Środowiska, Akademia Górniczo-Hutnicza: Kraków, Poland, 2011; pp. 91–97. ISBN 13 9788388927249. [Google Scholar]
- Regulation of the Ministry of Environment of 23 December 2002 Concerning the Criteria for Determination Waters Sensitive to Pollution by Nitrogen Compounds from Agricultural Sources. J. Laws 2002, 241, 2093. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20022412093 (accessed on 2 February 2018).
- Bujakowski, F.; Ostrowski, P.; Sopel, Ł.; Zlotoszewska-Niedziałek, H. Connection between glacitectonic forms and groundwater flow in the Vistula River Valley. Landf. Anal. 2014, 26, 61–69. (In Polish) [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Healy, R.W. Influence of a thin veneer of low-hydraulic-conductivity sediment on modelled exchange between river water and groundwater in response to induced infiltration. Hydrol. Process. 2012, 26, 544–557. [Google Scholar] [CrossRef]
- Maggi, F.; Gu, C.; Riley, W.J.; Hornberger, G.M.; Venterea, R.T.; Xu, T.; Spycher, N.; Steefel, C.; Miller, N.L.; Oldenburg, C.M. A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application. J. Geophys. Res. Biogeosci. 2008, 113, G02016. [Google Scholar] [CrossRef]
- Dwivedi, D.; Arora, B.; Steefel, C.I.; Dafflon, B.; Versteeg, R. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resour. Res. 2018, 54, 205–222. [Google Scholar] [CrossRef]
- Dwivedi, D.; Mohanty, B.P. Hot spots and persistence of nitrate in aquifers across scales. Entropy 2016, 18, 25. [Google Scholar] [CrossRef]
- Arora, B.; Mohanty, B.P.; McGuire, J.T. Inverse estimation of parameters for multi-domain flow models in soil columns with different macropore densities. Water Resour. Res. 2011, 47, W04512. [Google Scholar] [CrossRef] [PubMed]
- Kargel, J.S.; Kirk, R.L.; Fegly, B., Jr.; Treiman, A.H. Carbonate-sulfate volcanism on Venus? Icarus 1994, 112, 219–252. [Google Scholar] [CrossRef]
- Bujakowski, F.; Falkowski, T. Modelowanie filtracji w warstwie aluwialnej w warunkach wysokich gradientów hydraulicznych spowodowanych wezbraniem. In Praktyczne Metody Modelowania Przepływu Wód Podziemnych; Akademia Górniczo Hutnicza: Kraków, Poland, 2016; pp. 11–22. (In Polish) [Google Scholar]
- Karabon, J. Morfogenetyczna działalność wód wezbraniowych związana z zatorami lodowymi w dolinie środkowej Wisły. Prz. Geol. 1980, 9, 512–515. (In Polish) [Google Scholar]
Layer | Hydraulic Conductivity k | Specific Yield a | Specific Storage b Ss | Total Porosity b n | Effective Porosity c ne |
---|---|---|---|---|---|
(m day−1) | (-) | (m−1) | (-) | (-) | |
1 | 0.864 | 0.115 | 1.28 × 10−4 | 0.43 | 0.33 |
2 | 0.311 | 0.099 | 2.55 × 10−3 | 0.40 | 0.14 |
3 | 8.640 | 0.159 | 1.65 × 10−4 | 0.39 | 0.30 |
4 | 328.320 | 0.268 | 7.56 × 10−4 | 0.34 | 0.28 |
5 | 190.080 | 0.248 | 1.65 × 10−4 | 0.39 | 0.30 |
6 | 0.0016 | 0.047 | 1.92 × 10−3 | 0.40 | 0.04 |
No. | Half-Life t1/2 (Years) | Reference | First-Order Decay Coefficient λ (Day−1) |
---|---|---|---|
1 | 1−2.3 | [67] | 8.25 × 10−4–1.90 × 10−3 |
2 | 20 | [68] | 9.49 × 10−5 |
3 | 1.4 *−7.5 ** | [69] | 2.53 × 10−4–1.36 × 10−3 |
4 | 3.7 | [70] | 5.13 × 10−4 |
5 | 3.7 | [71] | 5.13 × 10−4 |
6 | 1.2−2.1 | [72] | 9.04 × 10−4–1.58 × 10−3 |
Concentration | Piezometer | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Observed | mg L−1 | 0.90 | 0.30 | 0.10 | 0.20 | 0.20 | 0.20 |
Calculated | mg L−1 | 0.36 | 0.21 | 0.38 | 0.34 | 0.21 | 0.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieczka, A.; Bujakowski, F.; Falkowski, T.; Koda, E. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water 2018, 10, 399. https://doi.org/10.3390/w10040399
Sieczka A, Bujakowski F, Falkowski T, Koda E. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water. 2018; 10(4):399. https://doi.org/10.3390/w10040399
Chicago/Turabian StyleSieczka, Anna, Filip Bujakowski, Tomasz Falkowski, and Eugeniusz Koda. 2018. "Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River" Water 10, no. 4: 399. https://doi.org/10.3390/w10040399
APA StyleSieczka, A., Bujakowski, F., Falkowski, T., & Koda, E. (2018). Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water, 10(4), 399. https://doi.org/10.3390/w10040399