Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China
Abstract
1. Introduction
2. New Framework to Analyze Riverbank Erosion
3. Tianmo Watershed and 2010 Debris Flows
4. Field Investigation
5. Back-Analysis of Riverbank Erosion
6. High-Resolution Satellite Images
7. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gregory, K.J.; Gurnell, A.M.; Hill, C.T. The permanence of debris dams related to river channel processes. Hydrol. Sci. J. 1985, 30, 371–381. [Google Scholar] [CrossRef]
- Yanites, B.J.; Webb, R.H.; Griffiths, P.G.; Magirl, C.S. Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Liu, C.; Yao, L. Study on features of river-blocked by debris flow and criterion of disaster at the opposite river bank. J. Sichuan Univ. (Eng. Sci. Ed.) 2012, 44, 93–100. (In Chinese) [Google Scholar]
- Petley, D. Understanding the Seti River Landslide in Nepal. Available online: https://blogs.agu.org/landslideblog/2012/05/23/understanding-the-seti-river-landslide-in-nepal/ (accessed on 18 December 2017).
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dam. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Fan, X.; Tang, C.X.; van Western, C.J.; Alkema, D. Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake. Nat. Hazards Earth Syst. Sci. 2012, 12, 3031–3044. [Google Scholar] [CrossRef]
- Abidin, R.Z.; Sulaiman, M.S.; Yusoff, N. Erosion risk assessment: A case study of the Langat River bank in Malaysia. Int. Soil Water Conserv. Res. 2017, 5, 26–35. [Google Scholar] [CrossRef]
- Tsubaki, R.; Kawahara, Y.; Sayama, T. Analysis of hydraulic and geomorphic condition causing railway embankment breach due to inundation flow. J. Hydrosci. Hydraul. Eng. 2012, 30, 87–99. [Google Scholar]
- Yang, C.T. Reclamation: Managing Water in the West Denver, Colorado; Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, U.S. Department of Interior: Washington, DC, USA, 2006.
- Julien, P.Y. Erosion and Sedimentation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Sulaiman, M.S.; Sinnakaudan, S.K.; Shukor, M.R. Near bed turbulence measurement with acoustic doppler velocimeter (ADV). KSCE J. Civ. Eng. 2013, 17, 1515–1528. [Google Scholar] [CrossRef]
- Robert, A. River Processes: An Introduction to Fluvial Dynamics; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Couper, P.R.; Maddock, I.P. Subaerial river bank erosion processes and their interaction with other bank erosion mechanism on the River Arrow, Warwickshire, UK. Earth Surf. Process. Landf. 2001, 26, 631–646. [Google Scholar] [CrossRef]
- Koos, E.; Linares-Guerrero, E.; Hunt, M.L.; Brennen, C.E. Rheological measurements of large particles in high shear rate flows. Phys. Fluids 2012, 24, 013302. [Google Scholar] [CrossRef]
- Osman, A.M.; Thorne, C.R. Riverbank stability analysis: Theory. J. Hydraul. Eng. 1988, 114, 134–150. [Google Scholar] [CrossRef]
- Thyagaraj, T.; Rao, S.M. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay. J. Geotech. Geoenviron. Eng. 2010, 136, 1695–1702. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, D.; Shen, Y.; Wang, X. Numerical simulation method of bank collapse based on theory of critical slip field. Rock Soil Mech. 2015, 36, 21–28. (In Chinese) [Google Scholar]
- Fellenius, W. Calculation of stability of earth dams. In Proceedings of the 2nd Congress on Large Dams, Washington, DC, USA, 7–12 September 1936; Volume 4, pp. 445–462. [Google Scholar]
- Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Géotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Bishop, A.W. The use of the slip circle in the stability analysis of earth slopes. Géotechnique 1971, 5, 7–17. [Google Scholar] [CrossRef]
- Wang, G.; Liu, F.; Fu, X.; Li, T. Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China. Sci. China Ser. E-Technol. Sci. 2009, 51, 82–94. [Google Scholar] [CrossRef]
- Ge, Y.; Cui, P.; Su, F.; Zhang, J.; Chen, X. Case history of the disastrous debris flows of Tianmo Watershed in Bomi County, Tibet, China: Some mitigation suggestions. J. Mt. Sci. 2014, 11, 1253–1265. [Google Scholar] [CrossRef]
- Meyer-Peter, E.; Muller, R. Formulas for bed-load transport. In Proceedings of the IAHSR 2nd Meeting, Stockholm, Sweden, 7–9 June 1948. [Google Scholar]
- Wang, Z.; Huang, J.; Su, D. River channel scour and scour rate of clear water flow. J. Sediment Res. 1998, 42, 3–13. (In Chinese) [Google Scholar]
- GEO-SLOPE International. Stability Modeling with SLOPE/W; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2012; pp. 1–238. [Google Scholar]
- Fu, C.; Fletcher, J.O. The relationship between Tibet-tropical ocean thermal contrast and internannual variability of Indian monsoon rainfall. J. Clim. Appl. Meteorol. 1985, 24, 841–847. [Google Scholar] [CrossRef]
- Cui, Y.; Guo, C.; Zhou, X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall. J. Mt. Sci. 2017, 14, 417–431. [Google Scholar] [CrossRef]
- Deng, M.F.; Chen, N.S.; Liu, M. Meteorological factors driving glacial till variation and the associated periglacial debris flow in Tianmo Valley, south-eastern Tibetan Plateau. Nat. Hazards Earth Syst. Sci. 2017, 17, 345–356. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Huang, K.; Sonechkin, D.M. Annual regional precipitation variations from a 700-year tree-ring record in South Tibet, Western China. Clim. Res. 2012, 53, 25–41. [Google Scholar] [CrossRef]
- Lu, R.; Tang, B.; Zhu, P. Debris Flow and Environment in Tibet; Chengdu Science and Technology University Press: Chengdu, China, 1999. (In Chinese) [Google Scholar]
- Grant, G.E.; Schmidt, J.C.; Lewis, S.L. A geological framework for interpreting downstream effects of dams on rivers. In A Peculiar River; O’Connor, J.E., Grant, G.E., Eds.; Water Science and Application, American Geophysical Union: Washington, DC, USA, 2007; Volume 7, pp. 203–219. [Google Scholar]
- Kummu, M.; Varis, O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomophology 2007, 85, 275–293. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Pierson, T.C. Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA. Earth Surf. Process. Landf. 2007, 32, 811–831. [Google Scholar] [CrossRef]
- Du, Z.; Wang, J.; Ping, G. Detection of distribution dimension of the earth-rock aggregate based on digital image process. J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.) 2012, 25, 37–40. (In Chinese) [Google Scholar]
- Zhang, Z.F.; Chen, X.P. Research progress on stability analysis of embankment under effects of river scouring. Adv. Sci. Technol. Water Resour. 2009, 29, 84–89. [Google Scholar]
- Shu, A.; Li, F.; Liu, H.; Duan, G.; Zhou, X. Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper Yellow River. Int. J. Sediment Res. 2016, 31, 291–298. [Google Scholar] [CrossRef]
- Parker, C.; Simon, A.; Throne, C.R. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology 2008, 101, 533–543. [Google Scholar] [CrossRef]
- Sinai, G.; Zaslavsky, D.; Golany, P. The effect of soil surface curvature on moisture and yield, Beer-Sheva observation. Soil Sci. 1981, 132, 367–375. [Google Scholar] [CrossRef]
- Thompson, J.C.; Moore, R.D. Relations between topography and water table depth in a shallow forest soil. Hydrol. Process. 1996, 10, 1513–1525. [Google Scholar] [CrossRef]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Scottish Environment Protection Agency. Engineering in the Water Environment Good Practice Guide Bank Protection: Rivers and Lochs. Available online: https://www.sepa.org.uk (accessed on 5 December 2017).
- Longoni, L.; Papini, M.; Brambilla, D.; Barazzetti, L.; Roncoroni, F.; Scaioni, M.; Ivanov, V.I. Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning. Remote Sens. 2016, 8, 241. [Google Scholar] [CrossRef]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E.; Kirchoff, C. Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ. 2005, 95, 493–501. [Google Scholar] [CrossRef]
- O’Neal, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Process. Landf. 2011, 36, 695–701. [Google Scholar] [CrossRef]
- Schenato, L.; Aneesh, R.; Palmieri, L.; Galtarossa, A.; Pasuto, A. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring. Opt. Laser Technol. 2016, 82, 57–62. [Google Scholar] [CrossRef]
- Tantianuparp, P.; Shi, X.; Zhang, L.; Balz, T.; Liao, M. Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens. 2013, 5, 2704–2719. [Google Scholar] [CrossRef]
- Ng, C.C.W.; Mu, Q.Y.; Zhou, C. Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures. Can. Geotech. J. 2016, 54, 270–279. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.E.; Cui, Y.; Au, K.Y.K.; Liu, H.; Wang, J.; Liu, D.; Wang, H. Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water 2018, 10, 250. https://doi.org/10.3390/w10030250
Choi CE, Cui Y, Au KYK, Liu H, Wang J, Liu D, Wang H. Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water. 2018; 10(3):250. https://doi.org/10.3390/w10030250
Chicago/Turabian StyleChoi, Clarence Edward, Yifei Cui, Kelvin Yuk Kit Au, Haiming Liu, Jiao Wang, Dingzhu Liu, and Hao Wang. 2018. "Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China" Water 10, no. 3: 250. https://doi.org/10.3390/w10030250
APA StyleChoi, C. E., Cui, Y., Au, K. Y. K., Liu, H., Wang, J., Liu, D., & Wang, H. (2018). Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water, 10(3), 250. https://doi.org/10.3390/w10030250