Minimum Performance Requirements for Microbial Fuel Cells to Achieve Energy-Neutral Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Steady-State Energy Sinks
2.2. Steady-State Energy and Power Generation
2.3. Requirements for Energy-Neutral Wastewater Treatment
3. Results and Discussion
3.1. Energy Utilization at WWTPs
3.2. Empirical Values for EMFC, ΔCOD and CE in MFC Studies Using Real Wastewater
3.3. Electrical Energy Generation from an MFC Using Average Values at Fixed CODs
3.4. COD Removal Requirements for Energy-Neutral Wastewater Treatment
3.5. Future Opportunities and Considerations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I. Energy efficiency strategies for municipal wastewater treatment facilities. Contract 2012, 303, 275–3000. Available online: https://www.nrel.gov/docs/fy12osti/53341.pdf (accessed on 25 June 2017).
- Carter-Jenkins, S. US EPA Press Release: EPA Tool Helps Communities Tap into Energy Savings. 2008. Available online: https://www.epa.gov/sustainable-water-infrastructure/water-and-energy-efficiency-utilities-and-home (accessed on 5 July 2017).
- United States Environmental Protection Agency (US EPA). Energy Efficiency in Water and Wastewater Facilities: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs; US EPA: Washington, DC, USA, 2013.
- Pabi, S.; Amarnath, A.; Goldstein, R.; Reekie, L. Electricity Use and Management in the Municipal Water Supply and Wastewater Industries; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2014. [Google Scholar]
- Dong, Y.; Qu, Y.; He, W.; Du, Y.; Liu, J.; Han, X.; Feng, Y. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour. Technol. 2015, 195, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, E.; Dolfing, J.; Scott, K.; Edwards, S.; Jones, C.; Curtis, T. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl. Microbiol. Biotechnol. 2013, 97, 6979–6989. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; He, Z. Long-term performance of a 200-liter modularized microbial fuel cell system treating municipal wastewater: Treatment, energy, and cost. Environ. Sci. Water Res. Technol. 2016, 2, 274–281. [Google Scholar] [CrossRef]
- Jiang, D.; Curtis, M.; Troop, E.; Scheible, K.; McGrath, J.; Hu, B.; Suib, S.; Raymond, D.; Li, B. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (mac mfcs) to enhance the power production in wastewater treatment. Int. J. Hydrog. Energy 2011, 36, 876–884. [Google Scholar] [CrossRef]
- Cusick, R.D.; Bryan, B.; Parker, D.S.; Merrill, M.D.; Mehanna, M.; Kiely, P.D.; Liu, G.; Logan, B.E. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl. Microbiol. Biotechnol. 2011, 89, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, W.; Liu, J.; Wang, X.; Qu, Y.; Ren, N. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour. Technol. 2014, 156, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Yuan, Y.; Wang, Y.; Zhou, S. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour. Technol. 2012, 123, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Feng, Y.; Qu, Y.; Du, Y.; Zhou, X.; Liu, J. A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment. Sci. Rep. 2015, 5, 18070. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Book Co.: New York, NY, USA, 2001. [Google Scholar]
- Huggins, T.; Fallgren, P.; Jin, S.; Ren, Z. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater. J. Microb. Biochem. Technol. S 2013, 6. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Krebs, M.; Hall, V.; O’Brein, T.; Blevins, B.B. California’s Water–Energy Relationship; California Energy Commission: Sacramento, CA, USA, 2005. [Google Scholar]
- Yonkin, M. Statewide Assessment of Energy Use by the Municipal Water and Wastewater Sector; New York State Energy Research and Development Authority: Albany, NY, USA, 2008.
- Mulinix, S. Aeration 101-Back to Basics. 2012. Available online: http://awea-ar.org/images/downloads/2012_Specialty_Conference_Presentations/aeration101_scott_mulinix_presentation_rev1.pdf (accessed on 4 August 2017).
- Tchobanoglous, G.; Burton, F.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; Mc Graw Hill: New York, NY, USA, 2002. [Google Scholar]
- Lee, J.; Phung, N.T.; Chang, I.S.; Kim, B.H.; Sung, H.C. Use of acetate for enrichment of electrochemically active microorganisms and their 16s rdna analyses. FEMS Microbiol. Lett. 2003, 223, 185–191. [Google Scholar] [CrossRef]
- Stoll, Z.A.; Dolfing, J.; Ren, Z.J.; Xu, P. Interplay of anode, cathode, and current in microbial fuel cells: Implications for wastewater treatment. Energy Technol. 2016, 4, 583–592. [Google Scholar] [CrossRef]
- Stoll, Z.A.; Ma, Z.; Trivedi, C.B.; Spear, J.R.; Xu, P. Sacrificing power for more cost-effective treatment: A techno-economic approach for engineering microbial fuel cells. Chemosphere 2016, 161, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Christgen, B.; Scott, K.; Dolfing, J.; Head, I.M.; Curtis, T.P. An evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLoS ONE 2015, 10, e0136108. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-Y.; Yang, W.; Logan, B.E. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water Res. 2015, 80, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Xing, D.; Logan, B.E. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens. Bioelectron. 2011, 26, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Ahn, Y.; Logan, B.E. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (mfc-afmbr) system for effective domestic wastewater treatment. Environ. Sci. Technol. 2014, 48, 4199–4206. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Logan, B.E. Domestic wastewater treatment using multi-electrode continuous flow mfcs with a separator electrode assembly design. Appl. Microbiol. Biotechnol. 2013, 97, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Hatzell, M.C.; Zhang, F.; Logan, B.E. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. J. Power Sour. 2014, 249, 440–445. [Google Scholar] [CrossRef]
- Ahn, Y.; Logan, B.E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Stager, J.L.; Zhang, X.; Logan, B.E. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry 2017, 118, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, W.; Ren, L.; Stager, J.; Evans, P.J.; Logan, B.E. Cod removal characteristics in air-cathode microbial fuel cells. Bioresour. Technol. 2015, 176, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ge, Z.; Grimaud, J.; Hurst, J.; He, Z. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ. Sci. Technol. 2013, 47, 4941–4948. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, R.; Selvam, A.; Cheng, K.Y.; Wong, J.W.-C. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells. Bioresour. Technol. 2016, 200, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Zheng, Y.; Zhou, S.; Yuan, Y.; Yuan, H.; Chen, Y. Scalable microbial fuel cell (mfc) stack for continuous real wastewater treatment. Bioresour. Technol. 2012, 106, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Akman, D.; Cirik, K.; Ozdemir, S.; Ozkaya, B.; Cinar, O. Bioelectricity generation in continuously-fed microbial fuel cell: Effects of anode electrode material and hydraulic retention time. Bioresour. Technol. 2013, 149, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.-Y.; Kim, H.-W.; Lim, K.-H.; Shin, H.-S. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresour. Technol. 2010, 101, S33–S37. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Hu, H.; Liu, H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sour. 2007, 171, 348–354. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.; Molenkamp, R.J.; Buisman, C.J. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 2007, 41, 1984–1994. [Google Scholar] [CrossRef] [PubMed]
- Sleutels, T.H.; Darus, L.; Hamelers, H.V.; Buisman, C.J. Effect of operational parameters on coulombic efficiency in bioelectrochemical systems. Bioresour. Technol. 2011, 102, 11172–11176. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Park, J.-D.; Ren, Z. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environ. Sci. Technol. 2012, 46, 5247–5252. [Google Scholar] [CrossRef] [PubMed]
- Virdis, B.; Rabaey, K.; Yuan, Z.; Keller, J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 2008, 42, 3013–3024. [Google Scholar] [CrossRef] [PubMed]
- Virdis, B.; Rabaey, K.; Rozendal, R.A.; Yuan, Z.; Keller, J. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res. 2010, 44, 2970–2980. [Google Scholar] [CrossRef] [PubMed]
- Vuono, D.; Henkel, J.; Benecke, J.; Cath, T.Y.; Reid, T.; Johnson, L.; Drewes, J.E. Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment. J. Memb. Sci. 2013, 446, 34–41. [Google Scholar] [CrossRef]
- Tarpeh, W.A.; Barazesh, J.M.; Cath, T.Y.; Nelson, K.L. Electrochemical stripping to recover nitrogen from source-separated urine. Environ. Sci. Technol. 2018, 52, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Kavvada, O.; Tarpeh, W.A.; Horvath, A.; Nelson, K.L. Life-cycle cost and environmental assessment of decentralized nitrogen recovery using ion exchange from source-separated urine through spatial modeling. Environ. Sci. Technol. 2017, 51, 12061–12071. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | P at MPP (W/m2) | Volume (mL) | CODIN (mg/L) | ΔCOD (mg/L) | Notes | Ref |
---|---|---|---|---|---|---|---|
EMFC (V) | 0.17 | 2.4 × 10−5 | 50 | 256 | 166 | SC-MFC; No membrane | [23] |
0.19 | 2.9 × 10−5 | 50 | 256 | 180 | SC-MFC; ETFE membrane | [23] | |
0.24 | 0.85 mW | 100 | 410 | - | HRT = 8.8 h; N1C config. | [24] | |
0.27 | 0.95 | 7 | - | 92% | SC-MFC; 20 °C config. | [25] | |
0.28 | 1.20 | 7 | - | 92% | SC-MFC; 30 °C config. | [25] | |
0.28 | 0.94 | 130 | 210 | 71 | SPA-U config.; Pt cathode | [26] | |
0.30 | 0.59 | 7 | - | 92% | SC-MFC; 10 °C config. | [25] | |
0.30 | 0.12 | 130 | 232 | - | SC-MFC; Rext = 1000 Ω | [27] | |
0.31 | 0.55 mW | 100 | 410 | - | HRT = 8.8 h; S2C config. | [24] | |
0.33 | 0.33 | 130 | 303 | - | SC-MFC; SEA config.; Rext = 1000 Ω | [28] | |
0.33 | 0.30 | 28 | 292 | - | HRT = 4 h; 23 °C; Pt cathode | [29] | |
0.34 | 0.32 | 170 | 545 | 447 | SC-MFC; Pt-NS; Rext = 100 Ω | [30] | |
0.37 | 0.28 | 130 | 303 | - | SC-MFC; SPA config.; Rext = 1000 Ω; | [28] | |
0.40 | 0.16 | 170 | 330 | 195 | SC-MFC; AC-CS; Rext = 300 Ω; | [30] | |
0.42 | 0.89 | 130 | 210 | 59 | SEA-U config.; Pt cathode | [26] | |
0.45 | 0.21 | 27 | 300 | - | SC-MFC; Rext = 1000 Ω; pH 8 | [21] | |
0.32 | Average of literature values | This study | |||||
CE | 0.13 | 0.89 | 130 | 210 | 59 | SEA-U config.; Pt cathode | [26] |
0.14 | - | 26 | 439 | - | SC-MFC; HRT = 2 h; Rext =1000 Ω | [31] | |
0.14 | - | 4000 | 280 | 196 | Tubular MFC | [32] | |
0.15 | 1.20 | 7 | - | 92% | SC-MFC; 30 °C config. | [25] | |
0.17 | 0.95 | 7 | - | 92% | SC-MFC; 20 °C config. | [25] | |
0.17 | 0.15 | 140 | 410 | 193 | SC-MFC; HRT = 2.2 h; N1C config. | [24] | |
0.18 | 0.10 | 140 | 410 | 134 | SC-MFC; HRT = 2.2 h; S2C config. | [24] | |
0.19 | 0.16 | 170 | 330 | 195 | SC-MFC; AC-CS; Rext = 300 Ω | [30] | |
0.22 | - | 26 | 439 | - | SC-MFC; HRT =2 h; Rext = 100 Ω | [31] | |
0.23 | 0.28 | 130 | 303 | 242 | SC-MFC; SPA config.; Rext = 1000 Ω | [28] | |
0.25 | 0.59 | 7 | - | 92% | SC-MFC; 10 °C config. | [25] | |
0.25 | 0.10 | 140 | 410 | 197 | SC-MFC; HRT = 4.4 h; S2C config. | [24] | |
0.26 | 0.30 | 28 | 292 | - | HRT = 4 h; 30 °C; Pt cathode | [29] | |
0.26 | 0.32 | 170 | 545 | 447 | SC-MFC; Pt-NS; Rext = 100 Ω | [30] | |
0.29 | 41 W/m3 | 76 | 14,000 | 8260 | TC-MFC; saline DWW; CEM | [33] | |
0.29 | 0.11 | 140 | 410 | 267 | SC-MFC; HRT = 8.8 h; S2C config. | [24] | |
0.31 | 0.14 | 140 | 410 | 221 | SC-MFC; HRT = 4.4 h; N1C config. | [24] | |
0.31 | 0.33 | 130 | 303 | 182 | SC-MFC; SEA config.; Rext = 1000 Ω | [28] | |
0.36 | 0.13 | 140 | 410 | 283 | SC-MFC; HRT = 8.8 h; N1C config. | [24] | |
0.38 | 0.30 | 28 | 292 | - | HRT = 4 h; 23 °C; Pt cathode | [29] | |
0.24 | Average of literature values | This study | |||||
CODIN (mg/L) | 2250 | Assumed value for high strength WW | This study | ||||
750 | Assumed value for medium strength WW | This study | |||||
250 | Assumed value for low strength WW | This study | |||||
CODOUT (mg/L) | 100 | Assumed lower limit of MFC COD removal | [31,34,35,36] | ||||
ΔCOD (mg/L) | 2150 | Assumed value for COD removal with high strength WW as the substrate | This study | ||||
650 | Assumed value for COD removal with medium strength WW as the substrate | This study | |||||
150 | Assumed value for COD removal with low strength WW as the substrate | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoll, Z.A.; Dolfing, J.; Xu, P. Minimum Performance Requirements for Microbial Fuel Cells to Achieve Energy-Neutral Wastewater Treatment. Water 2018, 10, 243. https://doi.org/10.3390/w10030243
Stoll ZA, Dolfing J, Xu P. Minimum Performance Requirements for Microbial Fuel Cells to Achieve Energy-Neutral Wastewater Treatment. Water. 2018; 10(3):243. https://doi.org/10.3390/w10030243
Chicago/Turabian StyleStoll, Zachary A., Jan Dolfing, and Pei Xu. 2018. "Minimum Performance Requirements for Microbial Fuel Cells to Achieve Energy-Neutral Wastewater Treatment" Water 10, no. 3: 243. https://doi.org/10.3390/w10030243
APA StyleStoll, Z. A., Dolfing, J., & Xu, P. (2018). Minimum Performance Requirements for Microbial Fuel Cells to Achieve Energy-Neutral Wastewater Treatment. Water, 10(3), 243. https://doi.org/10.3390/w10030243