Next Article in Journal
Ecological Models to Infer the Quantitative Relationship between Land Use and the Aquatic Macroinvertebrate Community
Previous Article in Journal
Ecohydrologic Connections in Semiarid Watershed Systems of Central Oregon USA
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Water 2018, 10(2), 183;

Assessment of Water Quality and Identification of Pollution Risk Locations in Tiaoxi River (Taihu Watershed), China

Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Human Parasite Molecular and Cell Biology Unit, The Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
Author to whom correspondence should be addressed.
Received: 21 August 2017 / Revised: 28 November 2017 / Accepted: 6 February 2018 / Published: 10 February 2018
Full-Text   |   PDF [3293 KB, uploaded 10 February 2018]   |  


Taihu Lake is the third largest freshwater lake in China and serves as a drinking water source for ~30 million residents. Tiaoxi River is one of the main rivers connected to this lake and contributes >60% of the source water. Taihu Lake has been facing various environmental issues; therefore, it is important to study the water quality of its inflow rivers. This study aimed to evaluate the physico-chemical and microbiological characteristics of Tiaoxi River and to determine the spatial and seasonal variations in the water quality. Water samples were collected from 25 locations across the Tiaoxi River in three seasons in 2014–2015. Fourteen water quality parameters including multiple nutrients and indicator bacteria were assessed, and the data analyzed by multivariate statistical analyses. The physico-chemical analysis showed high levels (>1 mg/L) of total nitrogen (TN) in all locations for all seasons. Total phosphorus (TP), nitrite-N (NO2-N), and ammonium-N (NH4-N) exceeded the acceptable limits in some locations and fecal coliform counts were high (>250 CFU/100 mL) in 15 locations. Hierarchical cluster analysis showed that the sampling sites could be grouped into three clusters based on water quality, which were categorized as low, moderate, and high pollution areas. Principal component analysis (PCA) applied to the entire dataset identified four principal components which explained 83% of the variation; pH, conductivity, TP, and NO3-N were found to be the key parameters responsible for variations in water quality. The overall results indicated that some of the sampling locations in the Tiaoxi River are heavily contaminated with pollutants from various sources which can be correlated with land use patterns and anthropogenic activities. View Full-Text
Keywords: Tiaoxi River; Taihu watershed; water quality; pollution; multivariate analysis Tiaoxi River; Taihu watershed; water quality; pollution; multivariate analysis

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Vadde, K.K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.J.; Sekar, R. Assessment of Water Quality and Identification of Pollution Risk Locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top