Next Article in Journal
Real-Time Burst Detection in District Metering Areas in Water Distribution System Based on Patterns of Water Demand with Supervised Learning
Previous Article in Journal
Lithologic Control of the Hydrochemistry of a Point-Bar Alluvial Aquifer at the Low Reach of the Nakdong River, South Korea: Implications for the Evaluation of Riverbank Filtration Potential
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle

Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale)

1
Department of Water Purification and Protection, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
2
Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
*
Author to whom correspondence should be addressed.
Water 2018, 10(12), 1764; https://doi.org/10.3390/w10121764
Received: 13 November 2018 / Revised: 27 November 2018 / Accepted: 28 November 2018 / Published: 1 December 2018
(This article belongs to the Special Issue Biofiltration for Water Treatment)
  |  
PDF [3887 KB, uploaded 1 December 2018]
  |  

Abstract

This article presents results of research which aimed to assess the impact of biofiltration processing on the biological stability of water. Effectiveness of biogenic substances removal (C, N, P) and bacteriological quality of water after the biofiltration process were discussed. The research was carried out on a semi-technical scale on natural underground water rich in organic compounds. A filter with a biologically active carbon (BAC) bed was used for the research. Despite the low water temperature of between 9–12 °C, there was a high efficiency of organic matter removal—33–70%. The number of mesophilic and psychrophilic bacteria in the water before and after the biofiltration process was comparable (0–23 CFU/mL) and met the requirements for drinking water. No E. coli was detected in the water samples. The biological material washed out of the filter bed did not cause deterioration of water quality which proved that the operating parameters of the biofilters were properly chosen, i.e., contact time of 30 min, filtration speed up to 3 m/h. Reduction of the content of nutrients in the treated water limits the risk of microbial growth and thus the emergence of biological growth in the distribution system. View Full-Text
Keywords: bacteriological contamination of water; biofiltration; biological stability; water treatment bacteriological contamination of water; biofiltration; biological stability; water treatment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Domoń, A.; Papciak, D.; Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K. Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). Water 2018, 10, 1764.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top