Determination of Removal Efficiencies for Escherichia coli, Clostridial Spores, and F-Specific Coliphages in Unit Processes of Surface Waterworks for QMRA Applications
Abstract
:1. Introduction
2. Material and Methods
2.1. Pilot Scale Waterworks
2.2. Full-Scale Waterworks 1 and 2
2.3. Experimental Design at the Pilot Scale Waterworks
2.4. Full-Scale Monitoring
2.5. Data Analysis
2.6. QMRA at Pilot Scale and Full-Scale Waterworks
- Coagulation + flotation 50%: removal efficiency of coagulation with flotation 50% lower compared to BAU
- Rapid sand filtration 50%: removal efficiency of rapid sand filtration 50% lower compared to BAU
- Activated carbon 50%: removal efficiency of activated carbon filtration 50% lower compared to BAU
- UV + chlorination 50%: UV and chlorination 50% lower compared to BAU
- UV + chlorination 0%: UV and chlorination not in use
- No treatment: source water used directly for human consumption without any treatment
3. Results
3.1. Microbial Counts in Full-Scale Waterworks
3.2. Physico-Chemical Results in Pilot Scale and Full-Scale Waterworks
3.3. Microbial Log10 Removals of Treatment Processes in Pilot Scale and Full-Scale Waterworks
3.3.1. Microbial Log10 Removals in the PWW Test Series
3.3.2. Microbial Log10 Removals in PWW Treatment Processes
3.3.3. Microbial Log10 Removals in FWW Treatment Processes
3.4. QMRA-Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BAU | Business as usual |
CFU | Colony forming unit |
CODMn | Chemical oxygen demand |
FWW | Full-scale waterworks |
PFU | Plaque forming unit |
PWW | Pilot scale waterworks |
QMRA | Quantitative microbial risk assessment |
References
- Crittenden, J.C.; Trussels, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. Water Treatment, Principles and Design, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 978-0471110187. [Google Scholar]
- Hijnen, W.A.M.; Medema, G.J. Elimination of Micro-Organisms by Drinking Water Treatment Processes. A Review; KWR Watercycle Research Institute, IWA Publishing: London, UK, 2010; 102p, ISBN 9781843393733. [Google Scholar]
- Bonton, A.; Bouchard, C.; Barbeau, B.; Jedrzejak, S. Comparative life cycle assessment of water treatment plants. Desalination 2012, 284, 42–54. [Google Scholar] [CrossRef]
- Payment, P.; Locas, A. Pathogens in Water: Value and Limits of Correlation with Microbial Indicators. Ground Water 2011, 49, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Edberg, S.C.; Rice, E.W.; Karlin, R.J.; Allen, M.J. Escherichia coli: The best biological drinking water indicator for public health protection. J. Appl. Microbiol. 2000, 88, S106–S116. [Google Scholar] [CrossRef]
- Medema, G.; Bahar, M.; Schets, F. Survival of Cryptosporidium parvum, Escherichia coli, faecal enterococci and Clostridium perfringens in river water: Influence of temperature and autochthonous microorganisms. Water Sci. Technol. 1997, 35, 249–252. [Google Scholar] [CrossRef]
- Payment, P. Poor efficacy of residual chlorine disinfectant in drinking water to inactivate waterborne pathogens in distribution systems. Can. J. Microbiol. 1999, 45, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Payment, P.; Waite, M.; Dufour, A. Introducing parameters for the assessment of drinking water quality. In Assessing Microbial Safety of Drinking Water–Improving Approaches and Methods; Dufour, A., Snozzi, M., Köster, W., Bartram, J., Ronchi, E., Fewtrell, L., Eds.; IWA Publishing: London, UK, 2003; pp. 47–77. [Google Scholar]
- Figueras, M.; Borrego, J.J. New perspectives in monitoring drinking water microbial quality. Int. J. Environ. Res. Public Health 2010, 7, 4179–4202. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneve, Switzerland, 2011; 564p, ISBN 978-92-4-154815-1. [Google Scholar]
- European Union. Commission Directive (EU) 2015/1787 of 6 October 2015 Amending Annexes II and III to Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption. Off. J. EU 2015, L 260/6–L 260/17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2015.260.01.0006.01.ENG (accessed on 18 October 2018).
- WHO. Water Safety Plan Manual, Step-by-Step Risk Management for Drinking-Water Suppliers; WHO: Geneva, Switzerland, 2009; 108p, ISBN 978-92-4-156263-8. [Google Scholar]
- Kløve, B.; Kvitsand, H.M.L.; Pitkänen, T.; Gunnarsdottir, M.J.; Gaut, S.; Gardarsson, S.M.; Rossi, P.M.; Miettinen, I. Groundwater and Microbial Pollution: Overview of groundwater sources and water supply systems in the Finland, Norway and Iceland. Invited review. Hydrol. J. 2017, 25, 1033–1044. [Google Scholar] [CrossRef]
- Haas, C.N.; Rose, J.B.; Gerba, C.P. Quantitative Microbial Risk Assessment; John Wiley & Sons Inc.: New York, NY, USA, 1999; 453p, ISBN 0-471-18397-0. [Google Scholar]
- Schijven, J.F.; Teunis, P.F.M.; Rutjes, S.A.; Bouwknegt, M.; de Roda Husman, A.M. QMRAspot: A tool for Quantitative Microbial Risk Assessment from surface water to potable water. Water Res. 2011, 45, 5564–5576. [Google Scholar] [CrossRef] [PubMed]
- Schijven, J.; Rutjes, S.; Smeets, P.; Teunis, P. QMRAspot: A Tool for Quantitative Microbial Risk Assessment for Drinking Water; Manual QMRAspot Version 2.0. RIVM Report 2014-0020; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2014; Available online: http://www.rivm.nl/dsresource?objectid=1fae75e3-e08d-402b-b4df-becea0ae8bdc&type=org&disposition=inline (accessed on 15 May 2018).
- Koivisto, J. Personal communication, 25 August 2016.
- Laine, J.; Huovinen, E.; Virtanen, M.; Snellman, M.; Lumio, J.; Ruutu, P.; Kujansuu, E.; Vuento, R.; Pitkänen, T.; Miettinen, I.; et al. An extensive gastroenteritis outbreak after drinking-water contamination by sewage effluent, Finland. Epidemiol. Infect. 2011, 139, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Schjiven, J.F.; Medema, G.J.; Vogelaar, A.J.; Hassanizadeh, S.M. Removal of microorganisms by deep well injection. J. Contam. Hydrol. 2000, 44, 301–327. [Google Scholar] [CrossRef]
- ISO 10705-1. Water Quality—Detection and Enumeration of F-Specific RNA-Bacteriophages, 1, Method by Incubation with a Host Strain; International Organization for Standardization (ISO): Geneva, Switzerland, 1995.
- WHO. Quantitative Microbial Risk Assessment: Application for Water Safety Management; WHO: Geneva, Switzerland, 2016; 187p, ISBN 978-92-4-156537-0. [Google Scholar]
- Männistö, S.; Ovaskainen, M.; Valsta, L. The National Findiet 2002 Study; National Public Health Institute: Helsinki, Finland, 2003; ISBN 951-740-338-0. Available online: http://urn.fi/URN:NBN:fi-fe2014030615904 (accessed on 15 May 2018).
- Teunis, P.; Van den Brandhof, W.; Nauta, M.; Wagenaar, J.; Van den Kerkhof, H.; Van Pelt, W. A reconsideration of the Campylobacter dose–response relation. Epidemiol. Infect. 2005, 133, 583–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teunis, P.F.; Moe, C.L.; Liu, P.; E Miller, S.; Lindesmith, L.; Baric, R.S.; Le Pendu, J.; Calderon, R.L. Norwalk virus: How infectious is it? J. Med. Virol. 2008, 80, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Nauta, M.J.; Jacobs-Reitsma, W.F.; Havelaar, A.H. A risk assessment model for Campylobacter in broiler meat. Risk Anal. 2007, 27, 845–861. [Google Scholar] [CrossRef] [PubMed]
- Rajala, R.; Pulkkanen, M.; Pessi, M.; Heinonen-Tanski, H. Removal of microbes from municipal waste water effluent by rapid sand filtration and subsequent UV irradiation. Water Sci. Technol. 2003, 47, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, S.A.; Rippey, S.R.; Watkins, W.D. Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Res. 1995, 29, 2483–2490. [Google Scholar] [CrossRef]
- Gehr, R.; Wagner, M.; Veerasubramanian, P.; Payment, P. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res. 2003, 37, 4573–4586. [Google Scholar] [CrossRef]
- Hijnen, W.; Suylen, G.; Bahlman, J.; Brouwer-Hanzens, A.; Medema, G. GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo) cysts in water treatment. Water Res. 2010, 44, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Hijnen, W.; Beerendonk, E.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Petterson, S.; Stenström, T. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA. J. Water Health 2015, 13, 625–644. [Google Scholar] [CrossRef] [PubMed]
- LeChevallier, M.W.; Kwok-Keung, A. Water Treatment and Pathogen Control. Process Efficiency in Achieving Safe Drinking Water; IWA Publishing: London, UK, 2004; 112p, ISBN 92-4-156255-2. [Google Scholar]
- Bell, K.; LeChevallier, M.; Abbaszadegan, M.; Arny, G.; Sinha, S.; Benjamin, M. Enhanced and Optimizes Coagulation for Particulate and Microbial Removal; Awwa Research Foundation and American Water Works Association: Denver, CO, USA, 2002. [Google Scholar]
- Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations, 3rd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014; ISBN 1466553375. [Google Scholar]
- Bar-Zeev, E.; Belkin, N.; Liberman, B.; Berman, T.; Berman-Frank, I. Rapid sand filtration pretreatment for SWRO: Microbial maturation dynamics and filtration efficiency of organic matter. Desalination 2012, 286, 120–130. [Google Scholar] [CrossRef]
- Sokolova, E.; Petterson, S.R.; Dienus, O.; Nyström, F.; Lindgren, P.; Petterson, T.J.R. Microbial risk assessment of drinking water based on hydrodynamic modelling of pathogen concentrations in source water. Sci. Total Environ. 2015, 526, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtola, M.J.; Miettinen, I.T.; Vartiainen, T.; Martikainen, P.J. Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes. Water Res. 2002, 36, 3681–3690. [Google Scholar] [CrossRef]
- Zyara, A.M.; Torvinen, E.; Veijalainen, A.M.; Heinonen-Tanski, H. The Effect of UV and Combined Chlorine/UV Treatment on Coliphages in Drinking Water Disinfection. Water 2016, 8, 130. [Google Scholar] [CrossRef]
- Petterson, S.; Ashbolt, N. QMRA and water safety management: Review of application in drinking water systems. J. Water Health 2016, 14, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Verani, M.; Federigi, I.; Donzelli, G.; Cioni, L.; Carducci, A. Human adenoviruses as waterborne index pathogens and their use for Quantitative Microbial Risk Assessment. Sci. Total Environ. 2018, 651, 1469–1475. [Google Scholar] [CrossRef]
- Bichai, F.; Smeets, P.W. Using QMRA-based regulation as a water quality management tool in the water security challenge: Experience from the Netherlands and Australia. Water Res. 2013, 47, 7315–7326. [Google Scholar] [CrossRef] [PubMed]
Test Series | Source Water | Description of the Test Series | Sampling Points (1) |
---|---|---|---|
PWW1 | Savilahti | Normal settings + microbial spike + follow-up of spike reduction | I, II, III, V |
PWW2 | Ritisenlahti | Normal settings + microbial spike | I, II, III, IV, V |
PWW3 | Ritisenlahti | pH increased in coagulation about 0.5 units + microbial spike | I, II, III, V |
Study | E. coli | Clostridium spp. Spores | F-Specific Coliphages |
---|---|---|---|
PWW1 | 9.2 (8.80–9.56) (n = 3) | 7.5 (7.29–7.57) (n = 3) | 9.0 (7.54–10.27) (n = 3) |
6.7 (1.84–9.69) * (n = 3) | 5.7 (2.55–8.05) * (n = 3) | 5.2 (0.65–10.58) * (n = 3) | |
PWW2 | 9.2 (8.00–10.55) (n = 3) | 5.2 (3.93–6.71) (n = 3) | 8.8 (7.83–9.77) (n = 3) |
PWW3 | 9.2 (8.73–9.57) (n = 3) | 7.3 (6.85–7.88) (n = 3) | 9.7 (8.84–10.44) (n = 3) |
FWW1 | 0.6 (−0.44–2.37) (n = 4) | 0.8 (−0.48–2.98) (n = 4) | NA |
FWW2 | 3.4 (2.67–5.99) (n = 3) | 3.1 (1.16–5.29) (n = 3) | 2.4 (0.00–3.86) (n = 3) |
Unit Process | Study | E. coli | Clostridium spp. Spores | F-Specific Coliphages |
---|---|---|---|---|
Coagulation and flotation | PWW1–3 (1) | 2.5 (1.88–3.14) (n = 9) | 2.4 (1.85–2.73) (n = 9) | 4.0 (2.57–5.19) (n = 9) |
PWW1–3 | 1.9 (0.64–3.14) (n = 14) | 2.1 (1.18–2.73) (n = 14) | 3.0 (0.70–5.19) (n = 14) * (0) | |
FWW2 | 3.8 (2.68–5.91) (n = 10) (0) | 1.9 (1.28–2.73) (n = 12) (0) | 1.3 (−0.30–2.26) (n = 12) * (0) | |
(a) [2] | 1.5 (0.6–3.7) (n = 101) | 1.4 (0.8–3.2) (n = 92) | 1.8 (0.2–4.3) (n = 89) | |
[10] (5) | NA (0.2–2.0) (n = NA) | NA (1.0–2.0) (n = NA) | NA (0.1–3.4) (n = NA) | |
Sand filtration | PWW1–3 (1) | 3.3 (2.94–4.30) (n = 9) | 1.2 (0.86–1.52) (n = 9) | 0.9 (-0.05–1.70) (n = 9) |
PWW1–3 | 3.0 (1.13–4.30) (n = 14) (0) | 1.1 (−0.16–1.70) (n = 14) | 0.8 (−0.05–1.70) (n = 14) * (0) | |
FWW1 (2) | 0.6 (0.03–1.68) (n = 12) (0) | 1.0 (−0.18–2.23) (n = 13) (0) | NA | |
(a) [2] ** | 0.9 (0.4–1.5) (n = 60) | 1.6 (0.5–2.9) (n = 123) | 1.1 (0.2–2.5) (n = 33) | |
(a) [2] (2) ** | 2.1 (1.0–3.4) (n = 54) | 2.4 (1.4–4.7) (n = 62) | 3.0 (1.2–5.3) (n = 69) | |
[10] (5) | NA (0.2–4.4) (n = NA) | NA (0.4–3.3) (n = NA) | NA (0.0–3.5) (n = NA) | |
[26] ** | 0.6 (0–1.7) (n = 6) | 0.6 (0–2.0) (n = 6) | 0.6 (0.1–1.7) (n = 12) | |
Ozonation | FWW1 | NA | −0.2 (−0.78–0.00) (n = 11) (0) | NA |
[27] ** | 1.4 (1.1–1.5) (n = 10) | 0.1 (0.1–0.2) (n = 10) | >2.5 (>2.2–>2.8) (n = 10) | |
[28] (3) ** | ca. 1.7 (n = 3) (7) | ca.0.5 (n = 3) (7) | ca. 3.0 (n = 3) (7) | |
Activated carbon filtration | FWW1 | −0.02(−0.36–0.04) (n = 11) (0) | −0.03(−0.30–0.00) (n = 11) (0) | NA |
FWW2 | NA | 0.9(−0.04–1.56) (n = 12) (0) | 0.9 (0.00–1.30) (n = 11) * (0) | |
[29] | 0.5 (0.0–1.1) (n = 8) | 0.6 (0.4–1.1) (n = 8) | 0.0 (0.0–0.0) (n = 4) | |
UV + chlorine disinfection | PWW1–3 (1) | (3) 3.4 (2.70–3.79) (n = 9) (0) | (3) 3.1 (0.14–4.86) (n = 9) (0) | (3) 4.2 (2.90–5.38) (n = 9) * (0) |
PWW1–3 | (3) 2.9 (0.08–3.79) (n = 13) (0) | (3) 2.8 (0.14–4.86) (n = 13) (0) | (3) 3.2 (0.00–5.38) (n = 12) * (0) | |
PWW2 | (4) 2.9 (2.40–3.19) (n = 3) (0) | (4) 2.2 (1.62–2.46) (n = 3) (0) | (4) 4.3 (4.21–4.47) (n = 3) * (0) | |
FWW2 | NA | (3) 0.3 (−0.08–1.00) (n = 10) (0) | (3) 0.3 (n = 1) * (0) | |
(4) 0.3 (−0.08–1.06) (n = 12) (0) | (4) 0.1 (0.00–0.30) (n = 10) * (0) | |||
(b) [30] ** | (4) max 6.0 (n = 41) | (4) max 3.0 (n = 9) | (4) max 4.9 (n = 109) | |
[28] ** | (4) ca. 3.5 (n = 13) (6) | (4) ca. 1.0 (n = 11) (6) | (4) ca. 1.5 (n = 10) (6) | |
Chlorine disinfection | FWW1 | 0.04 (−0.07–0.65) (n = 13) (0) | 0.05 (0.00–0.76) (n = 14) (0) | NA |
[31] | max. 3.39–5.20 (n = 6) | NA | max. 4.0–5.3 (n = 5) |
Treatment Process Data Source 1 ** | Treatment Process Data Source 2 ** | Treatment Process Data Source 3 ** | ||||
---|---|---|---|---|---|---|
Malfunction Scenario Pathogen | Source Water of FWW2 C/N | Contamination in Source Water C/N | Source Water of FWW2 C/N | Contamination in Source Water C/N | Source Water of FWW2 C/N | Contamination in Source Water C/N |
Business as usual | 0/0 | 0/0 | 0/0 | 0/0 | 7/0 | 36/0 |
Coagulation + flotation 50% | 0/0 | 0/0 | 0/0 | 1/1 | 96/0 | 380/4 |
Sand filtration 50% | 0/0 | 0/0 | 1/0 | 4/0 | NA | NA |
Activated carbon 50% | NA | NA | NA | NA | 16/0 | 76/0 |
UV + chlorination 50% | 0/0 | 0/2 | 0/2 | 0/1 | 22/0 | 100/5 |
UV + chlorination 0% | 2000/71 | 3300/5200 | 14/1 | 69/95 | 1400/5 | 2600/530 |
* No treatment | 6400/18,000 | 7600/99,900 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hokajärvi, A.-M.; Pitkänen, T.; Meriläinen, P.; Kauppinen, A.; Matikka, V.; Kovanen, S.; Vepsäläinen, A.; Miettinen, I.T. Determination of Removal Efficiencies for Escherichia coli, Clostridial Spores, and F-Specific Coliphages in Unit Processes of Surface Waterworks for QMRA Applications. Water 2018, 10, 1525. https://doi.org/10.3390/w10111525
Hokajärvi A-M, Pitkänen T, Meriläinen P, Kauppinen A, Matikka V, Kovanen S, Vepsäläinen A, Miettinen IT. Determination of Removal Efficiencies for Escherichia coli, Clostridial Spores, and F-Specific Coliphages in Unit Processes of Surface Waterworks for QMRA Applications. Water. 2018; 10(11):1525. https://doi.org/10.3390/w10111525
Chicago/Turabian StyleHokajärvi, Anna-Maria, Tarja Pitkänen, Päivi Meriläinen, Ari Kauppinen, Ville Matikka, Sara Kovanen, Asko Vepsäläinen, and Ilkka T. Miettinen. 2018. "Determination of Removal Efficiencies for Escherichia coli, Clostridial Spores, and F-Specific Coliphages in Unit Processes of Surface Waterworks for QMRA Applications" Water 10, no. 11: 1525. https://doi.org/10.3390/w10111525
APA StyleHokajärvi, A.-M., Pitkänen, T., Meriläinen, P., Kauppinen, A., Matikka, V., Kovanen, S., Vepsäläinen, A., & Miettinen, I. T. (2018). Determination of Removal Efficiencies for Escherichia coli, Clostridial Spores, and F-Specific Coliphages in Unit Processes of Surface Waterworks for QMRA Applications. Water, 10(11), 1525. https://doi.org/10.3390/w10111525