Least Squares Support Vector Mechanics to Predict the Stability Number of Rubble-Mound Breakwaters
Abstract
:1. Introduction
2. Prevalent Formulas for Prediction of Stability Number
3. Methods and Data
3.1. Least Squares Support Vector Machines
3.2. Kernel Function
3.3. Optimization Algorithm Used in LSSVM Calibration: PSO
3.4. Data Sets
4. Results
5. Conclusions
Funding
Conflicts of Interest
References
- Hudson, R.Y. Design of Quarry Stone Cover Layer for Rubble Mound Breakwaters; U.S. Army Engineer Research Report No. 2-2; Waterways Experiment Station, Coastal Engineering Research Centre: Vicksburg, MS, USA, 1958. [Google Scholar]
- Van Der Meer, J.W. Deterministic and probabilistic design of breakwater armor layers. J. Wtrwy. Port Coast. Ocean Eng. 1988, 114, 66–80. [Google Scholar] [CrossRef]
- Kaku, S. Hydraulic Stability of Rock Slopes Under Irregular Wave Attack. Master’s Thesis, University of Delaware, Newark, DE, USA, 1990. [Google Scholar]
- Smith, W.G.; Kobayashi, N.; Kaku, S. Profile Changes of Rock Slopes by Irregular Waves. In Proceedings of the 23th International Conference Coast Engineering ASCE, New York, NY, USA, 4–9 October 1992; pp. 1559–1572. [Google Scholar]
- Hanzawa, M.; Sato, H.; Takahashi, S.; Shimosako, K.; Takayama, T.; Tanimoto, K. New Stability Formula for Wave-Dissipating Concrete Blocks Covering Horizontally Composite Breakwaters. In Proceedings of the 25th Coastal Engineering Conference, ASCE, Orlando, FL, USA, 2–6 September 1996; pp. 1665–1678. [Google Scholar]
- Mase, H.; Sakamoto, M.; Sakai, T. Neural network for stability analysis of rubble-mound breakwaters. J. Wtrwy. Port Coast. Ocean Eng. 1995, 121, 294–299. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, W.S. Neural network for design and reliability analysis of rubble mound breakwaters. Ocean Eng. 2005, 32, 1332–1349. [Google Scholar] [CrossRef]
- Yagci, O.; Mercan, D.E.; Cigizoglu, H.K.; Kabdasli, M.S. Artificial intelligence methods in breakwater damage ratio estimation. J. Ocean Eng. 2005, 32, 2088–2106. [Google Scholar] [CrossRef]
- ASCE Task Committee. Artificial neural networks in hydrology—I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Verlag, Germany, 1995; ISBN 0-387-94559-8. [Google Scholar]
- ASCE Task Committee. Artificial neural networks in hydrology—II: Hydrological applications. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Samui, P.; Dixon, B. Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol. Process. 2012, 26, 1361–1369. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Science: Singapore, 2002. [Google Scholar] [CrossRef]
- Van Gestel, T.; Suykens, J.A.K.; Baesens, B.; Viaene, S.; Vanthienen, J.; Dedene, G.; De Moor, B.; Vandewalle, J. Benchmarking least squares support vector machine classifiers. Mach. Learn. 2004, 54, 5–32. [Google Scholar] [CrossRef]
- Okkan, U.; Serbes, Z.A. Rainfall-runoff modelling using least squares support vector machines. Environmetrics 2012, 23, 549–564. [Google Scholar] [CrossRef]
- Kim, D.; Kim, D.H.; Chang, S.; Lee, J.J.; Lee, D.H. Stability number prediction for breakwater armor blocks using support vector regression. KSCE J. Civ. Eng. 2011, 15, 225–230. [Google Scholar] [CrossRef]
- Kuntoji, G.; Rao, M.; Rao, S. Prediction of wave transmission over submerged reef of tandem breakwater using PSO-SVM and PSO-ANN techniques. ISH J. Hydraul. Eng. 2018. [Google Scholar] [CrossRef]
- Sukomal, M.; Rao, S.; Harish, N. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models. Int. J. Nav. Arch. Ocean 2012, 4, 112–122. [Google Scholar] [CrossRef]
- Harish, N.; Mandal, S.; Rao, S.; Patil, S.G. Particle swarm optimization based support vector machine fordamage level prediction of non-reshaped berm breakwater. Appl. Soft. Comput. 2015, 27, 313–321. [Google Scholar] [CrossRef]
- Kuntoji, G.; Rao, S.; Mandal, S. Application of support vector machine technique for damage level prediction of tandem breakwater. Int. J. Earth Sci. Eng. 2017, 10, 633–638. [Google Scholar] [CrossRef]
- Patil, S.G.; Mandal, S.; Hegde, A.V. Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Adv. Eng. Softw. 2012, 45, 203–212. [Google Scholar] [CrossRef]
- Balas, C.E.; Koç, M.L.; Tür, R. Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters. Appl. Ocean Res. 2010, 32, 425–433. [Google Scholar] [CrossRef]
- Erdik, T. Fuzzy logic approach to conventional rubble mound structures design. Expert Syst. Appl. 2009, 36, 4162–4170. [Google Scholar] [CrossRef]
- Shahidi, A.E.; Bonakdar, L. Design of rubble-mound breakwaters using M50 machine learning method. Appl. Ocean Res. 2009, 31, 197–201. [Google Scholar] [CrossRef]
- Koç, M.L.; Balas, C.E.; Koç, D.İ. Stability assessment of rubble-mound breakwaters using genetic programming. Ocean Eng. 2016, 111, 8–12. [Google Scholar] [CrossRef]
- Vidal, C.; Medina, R.; Lomonanco, P. Wave height parameter for damage description of rubble mound breakwater. Coast. Eng. 2006, 53, 712–722. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; John Wiley & Sons: Toronto, ON, Canada, 1998. [Google Scholar]
- Suykens, J.A.K. Nonlinear Modelling and Support Vector Machines. In Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 21–23 May 2001. [Google Scholar]
- Ekici, B.B. A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems. Measurement 2014, 50, 255–262. [Google Scholar] [CrossRef]
- Mercer, J. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. 1909, 209, 415–446. [Google Scholar] [CrossRef]
- Okkan, U.; Inan, G. Statistical downscaling of monthly reservoir inflows for Kemer watershed in Turkey: Use of machine learning methods, multiple GCMs and emission scenarios. Int. J. Climatol. 2015, 35, 3274–3295. [Google Scholar] [CrossRef]
- Okkan, U.; Serbes, Z.A.; Samui, P. Relevance vector machines approach for long-term flow prediction. Neural Comput. Appl. 2014, 25, 1393–1405. [Google Scholar] [CrossRef]
- Liong, S.Y.; Sivapragasam, C. Flood stage forecasting with support vector machines. J. Am. Water Resour. Assoc. 2002, 38, 173–186. [Google Scholar] [CrossRef]
- Lin, J.Y.; Cheng, C.T.; Chau, K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599–612. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Mujumdar, P.P. Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv. Water Resour. 2008, 31, 132–146. [Google Scholar] [CrossRef]
- Okkan, U.; Inan, G. Bayesian learning and relevance vector machines approach for downscaling of monthly precipitation. J. Hydrol. Eng. 2015, 20, 04014051. [Google Scholar] [CrossRef]
- Aich, U.; Banerjee, S. Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization. Appl. Math. Model. 2014, 38, 2800–2818. [Google Scholar] [CrossRef]
- Keerthi, S.S.; Shevade, S.K.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to Platt’s SMO algorithm for SVM classfier design. Neural Comput. 2001, 13, 637–649. [Google Scholar] [CrossRef]
- Lin, H.T.; Lin, C.J. A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-Type Methods; Technical Report; Department of Computer Science and Information Engineering, National Taiwan University: Taipei, Taiwan, 2003; Available online: http://www.work.caltech.edu/htlin/publication/doc/tanh.pdf (accessed on 2 August 2018).
- Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE Service Center: Piscataway, NJ, USA; pp. 1942–1948. [Google Scholar] [CrossRef]
- Hu, D.; Mao, W.; Zhao, J.; Guirong, Y. Application of LSSVM-PSO to Load Identification in Frequency Domain. In Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, AICI, Shanghai, China, 7–8 November 2009; pp. 231–240. [Google Scholar]
- Okkan, U.; Gedik, N.; Uysal, H. Usage of differential evolution algorithm in the calibration of parametric rainfall-runoff modeling. In Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering; Kim, D., Roy, S.S., Länsivaara, T., Deo, D., Samui, P., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 481–499. [Google Scholar] [CrossRef]
- Van Der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; No. 396; Delft Hydraulics Publication: Delft, The Netherlands, 1988. [Google Scholar]
Methods | Author(s) | INPUT DATA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | Nw | S | εm | Cotθ | h/Hs | SS | h/Ls | Hs | Hs/Ls | Ts | |||
ANN | Mase et al. [6] | ● | ● | ● | ● | ● | ● | ||||||
Kim and Park [7] | I | ● | ● | ● | ● | ● | ● | ||||||
II | ● | ● | ● | ● | ● | ||||||||
III | ● | ● | ● | ● | ● | ● | |||||||
IV | ● | ● | ● | ● | ● | ● | ● | ||||||
V | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Balas et al. [23] | I | ● | ● | ● | ● | ● | |||||||
II | ● | ● | ● | ● | |||||||||
FL | Erdik [24] | ● | ● | ● | ● | ● | ● | ||||||
MT (Model Trees) | Shadidi and Bonakdar [25] | I | ● | ● | ● | ● | ● | ||||||
II | ● | ● | ● | ● | ● | ● | |||||||
SVR | Kim et al. [17] | ● | ● | ● | ● | ● | ● | ||||||
GP | Koc et al. [26] | ● | ● | ● | ● | ● |
Data Feature | Variables | Training Data (558 data Points) | Testing Data (85 Data Points) |
---|---|---|---|
Input | P | 0.1–0.6 | 0.1–0.6 |
S | 0.32–46.38 | 0.35–45.86 | |
Nw | 1000–3000 | 1000–3000 | |
cotθ | 1.5–6 | 1.5–6 | |
h | 0.2–5 | 0.4–5 | |
Hs | 0.0461–1.18 | 0.0461–1.07 | |
Tp | 1.33–5.1 | 1.33–5.1 | |
Output | Ns | 0.94–4.38 | 0.79–3.91 |
Number of Inputs | R2 | Cp | P | S | Nw | ξm | cotθ | Tm | Tp | Hs | h |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 31.3 | 1229.7 | ● | ||||||||
2 | 57.6 | 548.8 | ● | ● | |||||||
3 | 68.1 | 278.3 | ● | ● | ● | ||||||
4 | 72.2 | 173.5 | ● | ● | ● | ● | |||||
5 | 74.2 | 123.4 | ● | ● | ● | ● | ● | ||||
6 | 78 | 26.4 | ● | ● | ● | ● | ● | ● | |||
7* | 78.9 | 6.6 | ● | ● | ● | ● | ● | ● | ● | ||
8 | 78.9 | 8.2 | ● | ● | ● | ● | ● | ● | ● | ● | |
9 | 78.9 | 10 | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Data Portion | LSSVM (Model 1) | LSSVM (Model 2) | MLRM | |||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | |
Training | 0.0531 | 0.9930 | 0.0485 | 0.9942 | 0.4105 | 0.5844 |
Testing | 0.0562 | 0.9950 | 0.0604 | 0.9942 | 0.5349 | 0.5192 |
Methods | Author(s) | Correlation Coefficients | |
---|---|---|---|
ANN | Mase et al. [7] | 0.91 | |
Kim and Park [8] | I | 0.914 | |
II | 0.906 | ||
III | 0.902 | ||
IV | 0.915 | ||
V | 0.952 | ||
Balas et al. [24] | I | 0.936–0.968 | |
II | 0.927 | ||
FL | Erdik [25] | 0.945 | |
MT | Shadidi and Bonakdar [26] | I | 0.931 |
II | 0.982 | ||
SVR | Kim et al. [18] | 0.949 | |
GP | Koc et al. [27] | 0.968–0.981 | |
LSSVM | The presented study | 0.997 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedik, N. Least Squares Support Vector Mechanics to Predict the Stability Number of Rubble-Mound Breakwaters. Water 2018, 10, 1452. https://doi.org/10.3390/w10101452
Gedik N. Least Squares Support Vector Mechanics to Predict the Stability Number of Rubble-Mound Breakwaters. Water. 2018; 10(10):1452. https://doi.org/10.3390/w10101452
Chicago/Turabian StyleGedik, Nuray. 2018. "Least Squares Support Vector Mechanics to Predict the Stability Number of Rubble-Mound Breakwaters" Water 10, no. 10: 1452. https://doi.org/10.3390/w10101452
APA StyleGedik, N. (2018). Least Squares Support Vector Mechanics to Predict the Stability Number of Rubble-Mound Breakwaters. Water, 10(10), 1452. https://doi.org/10.3390/w10101452