Streambank Erosion: Advances in Monitoring, Modeling and Management
Abstract
:1. Introduction
2. Main Outcomes of the Special Issue
2.1. Monitoring
2.2. Modeling
2.3. Management
3. Remaining Challenges and Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tomer, M.D.; Locke, M.A. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS’s Conservation Effects Assessment Project watershed studies. Water Sci. Technol. 2001, 64, 300–310. [Google Scholar] [CrossRef]
- Wilson, C.G.; Kuhnle, R.A.; Bosch, D.D.; Steiner, J.L.; Starks, P.J.; Tomer, M.D.; Wilson, G.V. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008, 63, 523–532. [Google Scholar] [CrossRef]
- Laubel, A.; Kronvang, B.; Hald, A.B.; Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 2003, 17, 3443–3463. [Google Scholar] [CrossRef]
- Mittelstet, A.R.; Storm, D.E.; Fox, G.A. Testing of the Modified Streambank Erosion and Instream Phosphorus Routines in the SWAT Model. J. Am. Water Resour. Assoc. 2017, 53, 101–114. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Pizzuto, J.E. Streambank Erosion and River Width Adjustment. In Sedimentation Engineering: Processes, Measurements, Modeling, and Practice; Garcia, M.H., Ed.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2008; pp. 387–438. [Google Scholar]
- Schottler, S.P.; Ulrich, J.; Belmont, P.; Moore, R.; Lauer, J.W.; Engstrom, D.R.; Almendinger, J.E. Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Process. 2014, 28, 1951–1961. [Google Scholar] [CrossRef]
- Arnold, E.; Toran, L. Effects of Bank Vegetation and Incision on Erosion Rates in an Urban Stream. Water 2018, 10, 482. [Google Scholar] [CrossRef]
- Dragićević, S.; Pripužić, M.; Živković, N.; Novković, I.; Kostadinov, S.; Langović, M.; Milojković, B.; Čvorović, Z. Spatial and Temporal Variability of Bank Erosion during the Period 1930–2016: Case Study—Kolubara River Basin (Serbia). Water 2017, 9, 748. [Google Scholar] [Green Version]
- Karimov, V.R.; Sheshukov, A.Y. Effects of Intra-Storm Soil Moisture and Runoff Characteristics on Ephemeral Gully Development: Evidence from a No-Till Field Study. Water 2017, 9, 742. [Google Scholar] [CrossRef]
- Kociuba, W.; Janicki, G. Effect of Meteorological Patterns on the Intensity of Streambank Erosion in a Proglacial Gravel-Bed River (Spitsbergen). Water 2018, 10, 320. [Google Scholar] [CrossRef]
- Enlow, H.K.; Fox, G.A.; Guertault, L. Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction. Water 2017, 9, 605. [Google Scholar] [CrossRef]
- Huang, Z.; Bai, Y.; Xu, H.; Cao, Y.; Hu, X. A Theoretical Model to Predict the Critical Hydraulic Gradient for Soil Particle Movement under Two-Dimensional Seepage Flow. Water 2017, 9, 828. [Google Scholar] [CrossRef]
- Lai, Y.G. Modeling Stream Bank Erosion: Practical Stream Results and Future Needs. Water 2017, 9, 950. [Google Scholar] [CrossRef]
- Mahalder, B.; Schwartz, J.S.; Palomino, A.M.; Zirkle, J. Estimating Erodibility Parameters for Streambanks with Cohesive Soils Using the Mini Jet Test Device: A Comparison of Field and Computational Methods. Water 2018, 10, 304. [Google Scholar] [CrossRef]
- Rousseau, Y.Y.; Biron, P.M.; Van de Wiel, M.J. Comparing the Sensitivity of Bank Retreat to Changes in Biophysical Conditions between Two Contrasting River Reaches Using a Coupled Morphodynamic Model. Water 2018, 10, 518. [Google Scholar] [CrossRef]
- Vonwiller, L.; Vetsch, D.F.; Boes, R.M. Modeling Streambank and Artificial Gravel Deposit Erosion for Sediment Replenishment. Water 2018, 10, 508. [Google Scholar] [CrossRef]
- Addisie, M.B.; Langendoen, E.J.; Aynalem, D.W.; Ayele, G.K.; Tilahun, S.A.; Schmitter, P.; Mekuria, W.; Moges, M.M.; Steenhuis, T.S. Assessment of Practices for Controlling Shallow Valley-Bottom Gullies in the Sub-Humid Ethiopian Highlands. Water 2018, 10, 389. [Google Scholar] [CrossRef]
- Beck, W.; Isenhart, T.; Moore, P.; Schilling, K.; Schultz, R.; Tomer, M. Streambank Alluvial Unit Contributions to Suspended Sediment and Total Phosphorus Loads, Walnut Creek, Iowa, USA. Water 2018, 10, 111. [Google Scholar] [CrossRef]
- Dave, N.; Mittelstet, A.R. Quantifying Effectiveness of Streambank Stabilization Practices on Cedar River, Nebraska. Water 2017, 9, 930. [Google Scholar] [CrossRef]
- Hoomehr, S.; Akinola, A.I.; Wynn-Thompson, T.; Garnand, W.; Eick, M.J. Water Temperature, pH, and Road Salt Impacts on the Fluvial Erosion of Cohesive Streambanks. Water 2018, 10, 302. [Google Scholar] [CrossRef]
- Langendoen, E.J. CONCEPTS—Conservational Channel Evolution and Pollutant Transport System; Research Report No. 16; USDA-ARS National Sedimentation Laboratory: Oxford, MS, USA, 2000. [Google Scholar]
- Lai, Y.G. SRH-2D Version 2: Theory and User’s Manual; U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center: Denver, CO, USA, 2008. [Google Scholar]
- Galland, J.C.; Goutal, N.; Hervouet, J.M. TELEMAC: A new numerical model for solving shallow water equations. Adv. Water Resour. 1991, 14, 138–148. [Google Scholar] [CrossRef]
- Hanson, G.J. Development of a jet index to characterize erosion resistance of soils in earthen spillways. Trans. ASAE 1991, 34, 2015–2020. [Google Scholar] [CrossRef]
- Wardinski, K.M.; Guertault, L.; Fox, G.A.; Castro-Bolinaga, C.F. Suitability of a Linear Model for Predicting Cohesive Soil Detachment during Jet Erosion Tests. J. Hydrol. Eng. 2018, 23, 06018004. [Google Scholar] [CrossRef]
- Daly, E.R.; Fox, G.A.; Al-Madhhachi, A.T.; Miller, R.B. A Scour Depth Approach for Deriving Erodibility Parameters from Jet Erosion Tests. Trans. ASABE 2013, 56, 1343–1351. [Google Scholar]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Rosgen, D.L. A Classification of Natural Rivers. Catena 1994, 22, 169–199. [Google Scholar] [CrossRef]
- Rosgen, D.L. Applied River Morphology; Wildland Hydrology: Pagosa Springs, CO, USA, 1996. [Google Scholar]
- Rosgen, D.L. A Practical Method of Computing Streambank Erosion Rate. In Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001; U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation: Reno, NV, USA, 2001; pp. 9–18. [Google Scholar]
- Rosgen, D.L. Watershed Assessment of River Stability and Sediment Supply; Wildland Hydrology: Fort Collins, CO, USA, 2009. [Google Scholar]
- Harman, W.; Starr, R.; Carter, M.; Tweedy, K.; Clemmons, M.; Suggs, K.; Miller, C. A Function-Based Framework for Stream Assessment and Restoration Projects; U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds: Washington, DC, USA, 2012. [Google Scholar]
- Yochum, S.E. Guidance for Stream Restoration and Rehabilitation; Technical Note TN-102.1; U.S. Department of Agriculture, Forest Service, Nation Stream and Aquatic Ecology Center: Fort Collins, CO, USA, 2015. [Google Scholar]
- Juracek, K.E.; Fitzpatrick, F.A. Limitations and implications of stream classification. J. Am. Water Resour. Assoc. 2003, 39, 659–670. [Google Scholar] [CrossRef]
- Smith, S.M.; Prestegard, K.L. Hydraulic Performance of a Morphology-Based Stream Channel Design. Water Resour. Res. 2005, 41, W11413. [Google Scholar] [CrossRef]
- Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D.; Rhoads, B.; McPhillips, M. Critical Evaluation of How the Rosgen Classification and Associated “Natural Channel Design” Methods Fail to Integrate and Quantify Fluvial Processes in Channel Response. J. Am. Water Resour. Assoc. 2007, 43, 1117–1131. [Google Scholar] [CrossRef]
- McMillan, M.; Liebens, J.; Metcalf, C. Evaluating the BANCS Streambank Erosion Framework on the Northern Gulf of Mexico Coastal Plain. J. Am. Water Resour. Assoc. 2017, 53, 1393–1408. [Google Scholar] [CrossRef]
- Shields, F.D.; Copeland, R.R.; Klingeman, P.C.; Doyle, M.W.; Simon, A. Design for Stream Restoration. J. Hydraul. Eng. 2003, 129, 575–584. [Google Scholar] [CrossRef]
- Bank Stability and Toe Erosion Model (BSTEM). Available online: https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-processes-research/research/bstem/overview/ (accessed on 30 August 2018).
- CEIWR-HEC. HEC-RAS USDA-ARS Bank Stability & Toe Erosion Model (BSTEM), Technical Reference & User’s Manual; U.S. Army Corp of Engineers, Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2015. [Google Scholar]
- Wilcock, P.R. Stream restoration in gravel-bed rivers. In Gravel Bed Rivers: Processes, Tools, and Environments; Church, M., Biron, P., Roy, A., Eds.; John Wiley: Chichester, UK, 2012; pp. 137–149. [Google Scholar]
- Enlow, H.K.; Fox, G.A.; Boyer, T.A.; Stoecker, A.; Storm, D.E.; Starks, P.; Guertault, L. A modeling framework for evaluating streambank stabilization practices for reach-scale sediment reduction. Environ. Model. Softw. 2018, 100, 201–212. [Google Scholar] [CrossRef]
- McDonald, A.; Lane, S.N.; Haycock, N.E.; Chalk, E.A. Rivers of dreams: On the gulf between theoretical and practical aspects of an upland river restoration. Trans. Inst. Br. Geogr. 2004, 29, 257–281. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. Restoring streams in an urbanizing world. Freshw. Biol. 2007, 52, 738–751. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. River restoration—The fuzzy logic of repairing reaches to reverse watershed scale degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Bolinaga, C.F.; Fox, G.A. Streambank Erosion: Advances in Monitoring, Modeling and Management. Water 2018, 10, 1346. https://doi.org/10.3390/w10101346
Castro-Bolinaga CF, Fox GA. Streambank Erosion: Advances in Monitoring, Modeling and Management. Water. 2018; 10(10):1346. https://doi.org/10.3390/w10101346
Chicago/Turabian StyleCastro-Bolinaga, Celso F., and Garey A. Fox. 2018. "Streambank Erosion: Advances in Monitoring, Modeling and Management" Water 10, no. 10: 1346. https://doi.org/10.3390/w10101346