Farm Water Productivity in Conventional and Organic Farming: Case Studies of Cow-Calf Farming Systems in North Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach
- Water Footprint
- (a)
- (b)
- Water scarcity footprint (LCA-based/ISO 14046:2014 [23]) taking into account evapotranspiration of technical water. Following the ISO 14046 standard, the water input in the studies following ISO 14044 or ISO 14046 [30,31] is part of an Inventory Analysis (LCI) in LCA and thus can be reported in a paper. The final number to be reported and compared is on impact equivalents. Formula used: Water input over farm output.
2.2. Water Related Indicators
2.2.1. System Boundaries and Data
2.2.2. Calculation of Indicators
- Farm water Productivity (FWP)
- Degree of water utilization (DWU)
- Specific technical water inflow (STW)
2.3. Calculation of Crop Transpiration
2.4. Calculation of Water Demand in Livestock
2.5. Farm Data
- The three OFS where selected in relation to their location in northern Germany, having comparable site conditions and operational structure (e.g., they cultivated the same crops) in order to give an overview of the water flows and water productivity in organic farming. Two of the three farms keep beef cattle.
- CFS where mainly selected by the criteria that the site conditions fit to the OFS as well as keeping beef cattle in order to give an overview of the differences between organic and conventional farming in beef cattle production.
2.5.1. Data Crop Production
2.5.2. Data Livestock Farming
2.6. Comparability of the Farms
3. Results
3.1. Water Flows at Farm Scale
3.2. Farm Water Productivity Food and Feed Crop
3.3. Livestock Water Productivity
3.4. Farm Water Indicators Whole Farm
4. Discussion
Methodological Discussion
- Growth rate of beef cattle were estimated in daily rates according to values from the literature, since not the entire stock could be weighed. Livestock generally does not grow homogeneously, whereas in this case this was assumed to reduce complexity.
- During the modeling, a fixed date has to be defined for seed date as well as harvest date to calculate the precipitation and transpiration rate of the main crop. In practice, harvests of, e.g., potatoes do not take place in one day. Therefore, the middle date of harvest of the main crop was estimated.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AWARE | Available Water Remaining |
BWSI | Blue Water Scarcity Index |
DM | Dry mass (DM) base |
CFS | Conventional farming system(s) |
DWU | Degree of Water Utilization |
DWD | German Weather Service |
FWP | Farm water productivity |
FAO | Food and Agriculture Organization |
FM | Fresh mass (FM) base |
LCA | Life Cycle Assessment |
OFS | Organic farming system(s) |
STW | Specific Technical Water Inflow |
UN | United Nations |
USDA | United States Department of Agriculture |
WP | Water productivity |
Wdrink | Drinking water |
Windirect | Indirect water |
Winflow | Water inflow |
Winput | Water input |
Wirri | Irrigation Water |
Wprec | Precipitation |
Wprec - transp | Transpiration stemming from precipitation |
Wprod | Productive water |
Wproduct | Water in product |
Wtap | Tap water |
Wtech | Technical water |
Wtransp | Plant transpiration |
References
- BMEL. Biologischer Landbau. Available online: https://www.bmel.de/DE/Landwirtschaft/Nachhaltige-Landnutzung/Oekolandbau/_Texte/OekologischerLandbauDeutschland.html (accessed on 10 July 2018).
- Lotter, D.W. Organic agriculture. J. Sustain. Agric. 2003, 21, 59–128. [Google Scholar] [CrossRef]
- Siegmeier, T.; Blumenstein, B.; Möller, D. Farm biogas production in organic agriculture: System implications. Agric. Syst. 2015, 139, 196–209. [Google Scholar] [CrossRef]
- Stolze, M. The Environmental Impacts of Organic Farming in Europe; Inst. für Landwirtschaftliche Betriebslehre: Stuttgart-Hohenheim, Germany, 2000; p. 127. [Google Scholar]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Dormaar, J.; Lindwall, C.; Kozub, G. Effectiveness of manure and commercial fertilizer in restoring productivity of an artificially eroded Dark Brown Chernozemic soil under dryland conditions. Can. J. Soil Sci. 1988, 68, 669–679. [Google Scholar] [CrossRef]
- Stanhill, G. The comparative productivity of organic agriculture. Agric. Ecosyst. Environ. 1990, 30, 1–26. [Google Scholar] [CrossRef]
- Sylvia, D.M.; Williams, S.E. Vesicular-arbuscular mycorrhizae and environmental stress. Mycorrhizae Sustain. Agric. 1992, 54, 101–124. [Google Scholar]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and Water Management Effects on crop Production, and Nutrient and Water use Efficiency in Dryland Areas of China. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2009; pp. 223–265. [Google Scholar]
- Withers, B.; Vipomd, S.; Lecher, K. Bewässerung; Paul Parey: Berlin, Germany, 1978. [Google Scholar]
- Drastig, K.; Prochnow, A.; Baumecker, M.; Berg, W.; Brunsch, R. Agricultural water management in Brandenburg. DIE ERDE–J. Geogr. Soc. Berl. 2011, 142, 119–140. [Google Scholar]
- Fusco, G.; Miglietta, P.P.; Porrini, D. How Drought Affects Agricultural Insurance Policies: The Case of Italy. J. Sustain. Dev. 2018, 11, 1. [Google Scholar] [CrossRef]
- DWD. Zahlen und Fakten zum Klima in Deutschland. Available online: https://www.dwd.de/DE/presse/pressekonferenzen/DE/2015/PK_10_03-2015/zundf_zur_pk.pdf;jsessionid=723D4B00CF437C727093ABB3C2651437.live21074?__blob=publicationFile&v=3 (accessed on 10 July 2018).
- Trömel, S.; Schönwiese, C.D. Robust trend estimation of observed German precipitation. Theor. Appl. Climatol. 2008, 93, 107–115. [Google Scholar] [CrossRef]
- Schönwiese, C.; Janoschitz, R. Klimatrendatlas Deutschland 1901–2000 [The Climate Trend Atlas Germany 1901–2000]; Institut für Atmosphäre und Umwelt: Frankfurt, Germany, 2008. [Google Scholar]
- Drastig, K.; Prochnow, A.; Libra, J.; Koch, H.; Rolinski, S. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Sci. Total Environ. 2016, 569–570, 1299–1314. [Google Scholar] [CrossRef] [PubMed]
- Köstner, B.; Surke, M.; Bernhofer, C. Klimadiagnose der Region Berlin/Barnim/Uckermark/Uecker-Randow für den Zeitraum 1951 bis 2006.-Materials of the Interdisciplinary Research Group, Options for a Future-Oriented Land-Use of Rural Areas; IAG Landinnovation Berlin Brandenburg Academy of Sciences and Humanities: Berlin, Germany, 2007; p. 51. [Google Scholar]
- Prochnow, A.; Drastig, K.; Klauss, H.; Berg, W. Water use indicators at farm scale: Methodology and case study. Food Energy Secur. 2012, 1, 29–46. [Google Scholar] [CrossRef]
- Drastig, K.; Palhares, J.C.P.; Karbach, K.; Prochnow, A. Farm water productivity in broiler production: Case studies in Brazil. J. Clean. Prod. 2016, 135, 9–19. [Google Scholar] [CrossRef]
- Krauss, M.; Keßler, J.; Prochnow, A.; Kraatz, S.; Drastig, K. Water productivity of poultry production: The influence of different broiler fattening systems. Food Energy Secur. 2015, 4, 76–85. [Google Scholar] [CrossRef]
- Peth, D.; Drastig, K.; Prochnow, A. Quantity-and quality-based farm water productivity in wine production: Case studies in Germany. Water 2017, 9, 88. [Google Scholar] [CrossRef]
- ISO. ISO 14046: Environmental Management, Water Footprint—Principles, Requirements and Guidelines; ISO: Geneva, Switzerland, 2014; p. 72. [Google Scholar]
- Garrido, A.; Llamas, M.R.; Varela-Ortega, C.; Novo, P.; Rodríguez-Casado, R.; Aldaya, M.M. Water Footprint and Virtual Water Trade in Spain: Policy Implications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 35. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for food: A water footprint perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Morrone, D.; Lamastra, L. Water footprint and economic water productivity of Italian wines with appellation of origin: Managing sustainability through an integrated approach. Sci. Total Environ. 2018, 633, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Sekyere, E.; Jordaan, H.; Chouchane, H. Evaluation of water footprint and economic water productivities of dairy products of South Africa. Ecol. Indic. 2017, 83, 32–40. [Google Scholar] [CrossRef]
- Allan, J.A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. Prior. Water Resour. Alloc. Manag. 1993, 13, 26. [Google Scholar]
- ISO. ISO 14040: Environmental Management-Life Cycle Assessment-Principles and Framework; International Organization for Standardization (ISO): Geneva, Switzerland, 2006; p. 20. [Google Scholar]
- ISO. ISO 14044: Environmental Management-Life Cycle Assessment-Requirements and Guidelines; International Organization for Standard (ISO): Geneva, Switzerland, 2006; p. 46. [Google Scholar]
- Descheemaeker, K.; Amede, T.; Haileslassie, A. Livestock and Water Interactions in Mixed Crop-Livestock Farming Systems of Sub-Saharan Africa: Interventions for Improved Productivity; IWMI: Colombo, Sri Lanka, 2009. [Google Scholar]
- Haileslassie, A.; Peden, D.; Gebreselassie, S.; Amede, T.; Descheemaeker, K. Livestock water productivity in mixed crop–livestock farming systems of the blue nile basin: Assessing variability and prospects for improvement. Agric. Syst. 2009, 102, 33–40. [Google Scholar] [CrossRef]
- Kebebe, E.; Oosting, S.; Haileslassie, A.; Duncan, A.; de Boer, I. Strategies for improving water use efficiency of livestock production in rain-fed systems. Animal 2015, 9, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef]
- Drastig, K.; Kraatz, S.; Libra, J.; Prochnow, A.; Hunstock, U. Implementation of hydrological processes and agricultural management options into the ATB-modeling database to improve the water productivity at farm scale. Agron. Res 2013, 11, 31–38. [Google Scholar]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Kraatz, S. Energy intensity in livestock operations–modeling of dairy farming systems in Germany. Agric. Syst. 2012, 110, 90–106. [Google Scholar] [CrossRef]
- De Boer, I.J.; Hoving, I.E.; Vellinga, T.V.; Van de Ven, G.W.; Leffelaar, P.A.; Gerber, P.J. Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: The case of Dutch milk production in Noord-Brabant. Int. J. Life Cycle Assess. 2013, 18, 193–203. [Google Scholar] [CrossRef]
- Döring, K.; Kraatz, S.; Prochnow, A.; Drastig, K. Indirect water demand of dairy farm buildings. Agric. Eng. Int. CIGR J. 2013, 15, 16–22. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Drastig, K.; Prochnow, A.; Kraatz, S.; Libra, J.; Krauß, M.; Döring, K.; Müller, D.; Hunstock, U. Modeling the water demand on farms. Adv. Geosci. 2012, 32, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Krauss, M.; Drastig, K.; Prochnow, A.; Rose-Meierhofer, S.; Kraatz, S. Drinking and cleaning water use in a dairy cow barn. Water 2016, 8, 302. [Google Scholar] [CrossRef]
- Meyer, U.; Everinghoff, M.; Gädeken, D.; Flachowsky, G. Investigations on the water intake of lactating dairy cows. Livest. Prod. Sci. 2004, 90, 117–121. [Google Scholar] [CrossRef]
- KTBL. Wasserversorgung in der Rinderhaltung: Wasserbedarf-Technik-Management; Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL): Frankfurt, Germany, 2008; p. 60. [Google Scholar]
- Geuder, U.; Pickl, M.; Scheidler, M.; Schuster, M.; Götz, K. Mast-, Schlachtleistung und Fleischqualität bayerischer Rinderrassen. Zuechtungskunde 2012, 84, 485–499. [Google Scholar]
- Omlor, M. Schlachtausbeute B1 Schlachttiere; BLE: Berlin, Germany, 2010; p. 10. [Google Scholar]
- Rahmann, G. Ökologische Tierhaltung: 63 Tabellen; Ulmer: Stuttgart, Germany, 2004; p. 136. [Google Scholar]
- Golze, M.; Balliet, U.; Balitzer, J.; Görner, C.; Pohl, G.; Stockinger, C.; Triphaus, H.; Zens, J. Extensive Rinderhaltung. Fleischrinder–Mutterkühe, Rassen, Herdenmanagement, Wirtschaftlichkeit; BLV Verlagsgesellschaft mbH: München, Germany, 1997; p. 159. [Google Scholar]
- Spiekers, H.; Nußbaum, H.; Potthast, V. Erfolgreiche Milchviehfütterung:[mit Futterkonservierung]; DLG Verlag: Frankfurt, Germany, 2009; p. 576. [Google Scholar]
- EU. Regulations Commission Delegated Regulation (EU) no 1198/2014 of 1 August 2014 Supplementing Council Regulation (EC) no 1217/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R1198&from=en (accessed on 10 July 2018).
- Niggli, U.; Slabe, A.; Schmid, O.; Halberg, N.; Schlüter, M. Vision for an Organic Food and Farming Research Agenda 2025. Organic Knowledge for the Future. 2008. Available online: http://orgprints.org/13439/1/niggli-etal-2008-technology-platform-organics.pdf (accessed on 10 July 2018).
- Rahmann, G.; Oppermann, R.; Paulsen, H.M.; Weißmann, F. Good, but not good enough? Research and development needs in organic farming. Landbauforsch 2009, 59, 29–40. [Google Scholar]
- Schmid, O.; Padel, S.; Halberg, N.; Huber, M.; Darnhofer, I.; Micheloni, C.; Koopmans, C.; Bügel, S.; Stopes, C.; Willer, H. Strategic Research Agenda for Organic Food and Farming; TP Organics: Brussels, Belgium, 2009. [Google Scholar]
- Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; Penning de Vries, F.W.; Morison, J.I. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 2006, 40, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Taylor & Francis: London, UK; Washington, DC, USA, 2009; p. 203. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. LCA 2018, 23, 368–378. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts? —A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Goedkoop, M.; Oele, M.; Leijting, J.; Ponsioen, T.; Meijer, E. Introduction to LCA with SimaPro. Available online: https://www.pre-sustainability.com/download/SimaPro8IntroductionToLCA.pdf (accessed on 10 July 2018).
- Aivazidou, E.; Tsolakis, N.; Iakovou, E.; Vlachos, D. The emerging role of water footprint in supply chain management: A critical literature synthesis and a hierarchical decision-making framework. J. Clean. Prod. 2016, 137, 1018–1037. [Google Scholar] [CrossRef]
- BÖLW. Forschungsfragen aus der Praxis: Woran muss Geforscht Werden, um die Ökologische Lebensmittelwirtschaft weiter Voranzubringen? Available online: https://www.boelw.de/themen/wissenstransfer/forschungsbedarf/ (accessed on 10 July 2018).
Crop | Sowing Date | Harvest Date |
---|---|---|
Potato | 20 April | 15 September |
Sown grassland 2 | - | - |
Oat | 7 April | 28 July |
Winter Rye | 10 October | 2 August |
Summer Rye | 12 March | 25 July |
Spelt | 15 October | 25 July |
Maize | 15 April | 14 September |
Triticale | 29 September | 7 August |
Wheat | 17 September | 30 July |
Rapeseed | 28 August | 2 August |
Dry Matter Content (% in FM) | Producer Price (€ t−1) OFS | Producer price (€ t−1) CFS | |
---|---|---|---|
Plant | |||
Potato | 23 | 330 | - |
Sown Grassland 1 | 30 | 56–59 | 42 |
Oat | 14 | 380 | 103 |
Winter Rye | 14 | 325 | 98 |
Summer Rye | 14 | 289 | - |
Spelt | 14 | 550 | - |
Maize 1 | 28 | - | 46 |
Triticale | 14 | - | 102 |
Wheat | 14 | - | 111 |
Rapeseed | 9 | - | 263 |
Farm 1 (OFS1) | Farm 2 (OFS2) | Farm 3 (OFS3) | Farm 4 (CFS1) | Farm 5 (CFS2) | |
---|---|---|---|---|---|
Federal State | Lower Saxony | Lower Saxony | Brandenburg | Brandenburg | Brandenburg |
Temperature (°C) | 9.2 | 9.5 | 9.2 | 9.4 | 9.3 |
Precipitation (mm) | 770 | 660 | 521 | 581 | 571 |
Soil | Sandy soil | Sandy soil | Sandy soil | Sandy soil | Sandy soil |
Soil Rating Points | 17–35 | 17–35 | 15–35 | 15–35 | 15–35 |
Size Total Farmland | 140 | 250 | 500 | 1000 | 1083 |
Type of Farming | OFS: field crops, suckler-cow husbandry | OFS: mixed crops-livestock | OFS: field crop, suckler-cow husbandry | CFS: mixed crops, suckler-cow husbandry | CFS: field crops, suckler-cow husbandry |
OFS1 | OFS2 | OFS3 | CFS1 | CFS2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Size | Yield | Size | Yield | Size | Yield | Size | Yield | Size | Yield | |
Area (ha) | 62.1 | - | 51.8 | - | 130 | - | 600 | - | 842 | - |
Plant Ø yield (tFM) | ||||||||||
Potato | 12.9 | 21.4 | 21.0 | 25.5 | 0.5 | 9.8 | - | - | - | |
Sown grassland | 14.9 | 18.4 | 10.0 | 11 | 11.1 | 11.8 | 175 | 9.2 | 271 | 13.2 |
Oat | 12.4 | 3.5 | - | - | 54.0 | 1.0 | 7.5 | 1.5 | - | - |
Winter rye | - | - | 14.5 | 3.1 | - | - | 142 | 6.1 | - | - |
Summer rye | 10.8 | 2.5 | - | - | 29.7 | 1.1 | - | - | - | - |
Spelt | 11.0 | 3.0 | 6.4 | 2.5 | 35.1 | 1.4 | - | - | - | - |
Maize | - | - | - | - | - | - | 205 | 32.1 | 285 | 30.6 |
Triticale | - | - | - | - | - | - | 71 | 4.5 | - | - |
Wheat | - | - | - | - | - | - | - | - | 104 | 4.7 |
Rapeseed | - | - | - | - | - | - | - | - | 182 | 3.2 |
OFS1 | OFS2 | OFS3 | CFS1 | CFS2 | |
---|---|---|---|---|---|
Balanced Period | 20 June 2015–19 April 2016 | - | 20 June 2015–19 April 2016 | 1 January 2012–31 December 2012 | 1 January 2010–31 December 2010 |
Race | Gelbvieh | Gelbvieh | Uckermärker, Simmental | Hybrid (Fleischrind × Fleischrind) | |
Herd Seize | 18 | - | 30 | 129 | 190 |
CW 1 | 2436 | 3480 | 32,944 | 52,000 | |
Producer price € kg−1 | 4.10 | - | 5.00 | 2.63 | 2.63 |
Diet Components | Diet Proportion Summer (%) | Diet Proportion Winter (%) | |
---|---|---|---|
OFS1 | Grassland Grass silage Hay Potato | 95 4 1 - | - 67 30 3 |
OFS2 | - | - | - |
OFS3 | Hay Straw Grass silage Grassland | - - - 100 | 24 24 49 3 |
CFS1 | Maize silage Rapeseed meal Soy meal Concentrate Straw | 77.84 7.19 3.59 8.38 2.99 | See diet proportion summer |
CFS2 | Grass silage Maize silage Straw Concentrate | 34.24 58.7 2.17 4.89 |
Unit | OFS1 | OFS2 | OFS3 | CFS1 | CFS2 | |
---|---|---|---|---|---|---|
FWPfood crops,mass | kgFM m−3Winput | 2.40 | 4.27 | 0.59 | 1.14 | 1.12 |
FWPfood crops,mon | €m3Winput | 0.89 | 1.44 | 0.20 | 0.13 | 0.22 |
FWPfeed crops,mass | kgFMm−3Winput | 3.73 | 2.18 | 3.98 | 8.60 | 9.53 |
Plant | OFS1 | OFS2 | OFS3 | CFS1 | CFS2 | |
---|---|---|---|---|---|---|
FWPfood crops,mass [kgDM m−3Winput] | Potato | 1.44 1.1 0.9 | 2.86 | 1.12 | - | - |
Oat | 0.92 | - | 0.57 | 0.40 | - | |
Winter Rye | - | 1.06 | - | 1.10 | - | |
Summer Rye | 0.63 | - | 0.39 | - | - | |
Spelt | 0.86 | 0.64 | 0.45 | - | - | |
Triticale | - | - | - | 0.78 | - | |
Wheat | - | - | - | - | 1.19 | |
Rapeseed | - | - | - | - | 0.89 | |
Crops Total | 0.98 | 1.9 | 0.49 | 0.97 | 1.0 | |
FWPfood crops,mon [€ m−3Winput] | Potato | 2.09 | 2.46 | 1.16 | - | - |
Oat | 0.41 | - | 0.16 | 0.05 | - | |
Winter Rye | - | 0.4 | - | 0.15 | - | |
Summer Rye | 0.21 | - | 0.13 | - | - | |
Spelt | 0.55 | 0.42 | 0.29 | - | - | |
Triticale | - | - | - | 0.70 | - | |
Wheat | - | - | - | - | 0.15 | |
Rapeseed | - | - | - | - | 0.26 | |
Crops Total | 0.86 | 1.44 | 0.2 | 0.13 | 0.22 |
OFS1 | OFS2 | OFS3 | CFS1 | CFS2 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | Total | 2012 | 2013 | 2014 | 2015 | Total | 2012 | 2013 | 2014 | 2015 | Total | 2011 | 2012 | Total | 2010 | Total | ||
Ø Temp. (°C) | 9.70 | 9.40 | 10.90 | 10.40 | 9.20 | 9.20 | 9.00 | 10.60 | 10.0 | 9.50 | 9.70 | 9.20 | 9.10 | 10.4 | 9.20 | 10.20 | 9.60 | 9.40 | 8.10 | 9.30 | |
Ø Prec. (mm) | 681 | 677 | 639 | 730 | 770 | 697 | 678 | 555 | 711 | 658 | 591 | 543 | 483 | 404 | 525 | 607 | 606 | 581 | 701 | 571 | |
FWP Food Crops (kgFM m−3Winput) | Potato | 7.53 | 8.86 | 4.73 | 4.0 | 6.27 | 7.43 | 7.79 | 6.9 | 7.69 | 7.45 | 4.64 | 4.95 | 5.07 | - | 4.89 | - | - | |||
Oat | - | 1.30 | 1.30 | 0.70 | 1.10 | - | - | - | - | - | - | 0.52 | 0.75 | 0.71 | 0.66 | 0.46 | - | 0.46 | - | ||
Winter rye | - | - | - | - | - | 1.33 | 1.00 | 1.38 | 1.25 | 1.24 | - | - | - | - | - | 0.93 | 1.66 | 1.29 | - | ||
Summer rye | 0.79 | 0.91 | 0.76 | 0.46 | 0.73 | - | - | - | - | - | 0.41 | 0.34 | 0.59 | 0.47 | 0.45 | - | - | ||||
Spelt | - | - | - | 1.00 | 1.00 | - | 0.61 | 0.48 | 1.16 | 0.75 | 0.46 | 0.47 | 0.63 | 0.55 | 0.53 | - | - | ||||
Triticale | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.88 | 0.95 | 0.92 | - | ||
Wheat | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.39 | ||
Rapeseed | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.97 | ||
Food crops Total | 4.12 | 3.70 | 2.49 | 1.63 | 2.40 | 5.25 | 4.44 | 4.18 | 4.12 | 4.27 | 0.47 | 0.47 | 0.74 | 0.57 | 0.59 | 0.90 | 1.37 | 1.14 | 1.12 | ||
FWP Feed Crops (kgFM m−3Winput) | Sown Grassland | 2.13 | 5.39 | 5.50 | 1.89 | 3.73 | 2.57 | 1.64 | 2.29 | 2.23 | 2.18 | - | 3.46 | 4.69 | 3.81 | 3.98 | 5.53 | 6.23 | 5.60 | 8.00 | |
Maize | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 12.36 | 7.84 | 10.1 | 10.98 | ||
Feed crops Total | 2.13 | 5.39 | 5.50 | 1.89 | 3.73 | 2.57 | 1.64 | 2.29 | 2.23 | 2.18 | - | 3.46 | 4.69 | 3.81 | 3.98 | 10.31 | 7.12 | 8.60 | 9.53 |
Indicator | Unit | OFS1 | OFS2 | OFS3 | CFS1 | CFS2 |
---|---|---|---|---|---|---|
Race | Gelbvieh | Gelbvieh | Uckermärker, Simmental | Hybrid (Fleischrind × Fleischrind) | ||
FWPlivestock,mass | kg CW m−3Winput | 0.069 | - | 0.054 | 0.066 | 0.090 |
FWPlivestock,mon | € m−3Winput | 0.283 | - | 0.269 | 0.173 | 0.237 |
Unit | OFS1 | OFS2 | OFS3 | CFS1 | CFS2 | |
---|---|---|---|---|---|---|
FWPmass | kgFM m−3Winput | 2.14 | - | 0.48 | 0.64 | 0.45 |
DWU | - | 0.57 | 0.50 | 0.66 | 0.55 | 0.47 |
STW | m3 Wtech ha−1 year−1 | 260.8 | 276.8 | 2.40 | 3.40 | 2.70 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vellenga, L.; Qualitz, G.; Drastig, K. Farm Water Productivity in Conventional and Organic Farming: Case Studies of Cow-Calf Farming Systems in North Germany. Water 2018, 10, 1294. https://doi.org/10.3390/w10101294
Vellenga L, Qualitz G, Drastig K. Farm Water Productivity in Conventional and Organic Farming: Case Studies of Cow-Calf Farming Systems in North Germany. Water. 2018; 10(10):1294. https://doi.org/10.3390/w10101294
Chicago/Turabian StyleVellenga, Leen, Gregor Qualitz, and Katrin Drastig. 2018. "Farm Water Productivity in Conventional and Organic Farming: Case Studies of Cow-Calf Farming Systems in North Germany" Water 10, no. 10: 1294. https://doi.org/10.3390/w10101294
APA StyleVellenga, L., Qualitz, G., & Drastig, K. (2018). Farm Water Productivity in Conventional and Organic Farming: Case Studies of Cow-Calf Farming Systems in North Germany. Water, 10(10), 1294. https://doi.org/10.3390/w10101294