Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. SWAT Model Overview and Performance during Calibration and Validation
2.3. Scenarios
2.3.1. Climate Change Scenarios
2.3.2. Land Use Change Scenarios
2.3.3. Management Scenarios
2.3.4. Combined Scenarios Analysis
3. Results and Discussion
3.1. Water Balance during Baseline Periods
3.2. Impact of Climate Changes
3.2.1. Projected Changes in Temperature and Precipitation
3.2.2. Projected Changes in the Seasonal Water Balance
3.2.3. Projected Changes in the Annual Water Balance
3.3. Impact of Land Use Changes
3.4. Impact of Climate and Land Use Changes under the Traditional Cultivation System
3.5. Effect of Management Practices under Climate and Land Use Changes
3.5.1. Traditional Cultivation System with Fertilizers Application
3.5.2. Rainfed-Bunded Rice Cultivation System with No Fertilizers Application
3.5.3. Rainfed-Bunded Rice Cultivation System with Fertilizers Application
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Paeth, H.; Capo-Chichi, A.; Endlicher, W. Climate change and food security in tropical West Africa—A dynamic-statistical modelling approach. Erdkunde 2008, 62, 101–115. [Google Scholar] [CrossRef]
- Bossa, A.Y.; Diekkrüger, B.; Giertz, S.; Steup, G.; Sintondji, L.O.; Agbossou, E.K.; Hiepe, C. Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agric. Water Manag. 2012, 115, 20–37. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion in the tropics. In Principles and Management; McGraw-Hill, Inc.: New York, NY, USA, 1990; 580p. [Google Scholar]
- Steiner, K.G. Causes of Soil Degradation and Development Approaches to Sustainable Soil Management. GTZ Report. 1996. Available online: http://agriwaterpedia.info/images/c/c1/GIZ,_Steiner,_K.G._(1996)_Causes_of_soil_degradation_and_development_approaches_to_sustainable_soil_managament_Chapter_1_-_4.pdf (accessed on 30 March 2017).
- Hiepe, C. Soil Degradation by Water Erosion in a Sub-Humid West-African Catchment, a Modelling Approach Considering Land Use and Climate Change in Benin. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2008. Available online: http://hss.ulb.uni-bonn.de/2008/1628/1628.htm (accessed on 2 March 2017).
- Rodenburg, J.; Zwart, S.J.; Kiepe, P.; Narteh, L.T.; Dogbe, W.; Wopereis, M.C.S. Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches. Agric. Syst. 2014, 123, 1–11. [Google Scholar] [CrossRef]
- Danvi, A.; Jütten, T.; Giertz, S.; Zwart, S.J.; Diekkrüger, B. A spatially explicit approach to assess the suitability for rice cultivation in an inland valley in central Benin. Agric. Water Manag. 2016, 177, 95–106. [Google Scholar] [CrossRef]
- Windmeijer, P.N.; Andriesse, W. Inland Valleys in West Africa: An Agro-Ecological Characterization of Rice-Growing Environments; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1993. [Google Scholar]
- Totin, E.; Stroosnijder, L.; Agbossou, E. Mulching upland rice for efficient water management: A collaborative approach in Benin. Agric. Water Manag. 2013, 125, 71–80. [Google Scholar] [CrossRef]
- Giertz, S.; Steup, G.; Schönbrodt, S. Use and constraints on the use of inland valley ecosystems in central Benin: Results from an inland valley survey. Erdkunde 2012, 66, 239–253. [Google Scholar] [CrossRef]
- Duku, C.; Zwart, S.; Hein, L. Modelling the forest and woodland-irrigation nexus in tropical Africa: A case study in Benin. Agric. Ecosyst. Environ. 2016, 230, 105–115. [Google Scholar] [CrossRef]
- Duku, C.; Zwart, S.; Van Bussel, L.; Hein, L. Quantifying trade-offs between future yield levels, food availability and forest and woodland conservation in Benin. Sci. Total Environ. 2018, 610–611, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.T.; Sun, G.; Liu, C.; Myers, J.A.M.; McNulty, S.G. Future water budgets and water supply stress under climate change and urbanization in the upper Neuse River Basin, North Carolina, USA. Am. J. Environ. Sci. 2015, 11, 175–185. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Liew, M.W.; Van, F.S.; Pathak, T.B. Climate change impacts on streamflow, water quality, and best management practices for the Shell and Logan Creek watersheds in Nebraska, USA. Int. J. Agric. Biol. Eng. 2012, 5, 13–34. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Qin, C.; Zhu, A. A Review and Discussion on Modeling and Assessing Agricultural Best Management Practices under Global Climate Change. J. Sustain. Dev. 2016, 9, 245–255. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Res. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- Quyen, N.T.N.; Liem, N.D.; Loi, N.K. Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam. Int. Soil Water Conserv. Res. 2014, 2, 74–86. [Google Scholar] [CrossRef]
- Wagner, P.D.; Kumar, S.; Schneider, K. An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrol. Earth Syst. Sci. 2013, 17, 2233–2246. [Google Scholar] [CrossRef]
- Pervez, S.; Henebry, G.M. Regional studies assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J. Hydrol. 2015, 3, 285–311. [Google Scholar]
- Dobrovolski, R.; Diniz-Filho, J.A.F.; Loyola, R.D.; Junior, P.D.M. Agricultural expansion and the fate of global conservation priorities. Biodivers. Conserv. 2011, 20, 2445–2459. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Schoof, J.T.; Secchi, S. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production. Hydrol. Earth Syst. Sci. 2016, 20, 3325–3342. [Google Scholar] [CrossRef]
- Giang, P.Q.; Toshiki, K.; Sakata, M.; Kunikane, S.; Vinh, T.Q. Modelling climate change impacts on the seasonality of water resources in the upper Ca river watershed in southeast Asia. Sci. World J. 2014, 2014, 279135. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Park, M.J.; Ahn, S.R.; Park, G.A.; Yi, J.E.; Kim, G.S.; Srinivasan, R.; Kim, S.-J. Assessment of future climate change impacts on water quantity and quality for a mountainous dam watershed using SWAT. Am. Soc. Agric. Bio. Eng. 2011, 54, 1725–1737. [Google Scholar]
- Praskievicz, S.; Chang, H. A review of hydrological modeling of basin-scale climate change and urban development impacts. Prog. Phys. Geogr. 2009, 33, 650–671. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, Y.Q.; Xu, C.Y.; Chen, X.H.; Chen, X.; Singh, V.P. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol. 2007, 336, 316–333. [Google Scholar] [CrossRef]
- Leavesley, G.H. Modeling the effects of climate change on water resources: A review. Clim. Chang. 1994, 28, 159–177. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation; Grassland, Soil and Water Resources Laboratory: Temple, TX, USA, 2009; Available online: http://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 30 March 2017).
- Panagopoulos, Y.; Makropoulos, C.; Mimikou, M. Decision support for diffuse pollution management. Environ. Model. Softw. 2012, 30, 57–70. [Google Scholar] [CrossRef]
- Malutta, S.; Kobiyama, M. SWAT application to analyze the floods in Negrinho River basin–SC, Brazil. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011. [Google Scholar]
- Wilson, C.O.; Weng, Q. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Sci. Total Environ. 2011, 409, 4387–4405. [Google Scholar] [CrossRef] [PubMed]
- Winai, W.; Kobkiat, P. Integrated Hydrologic and Hydrodynamic model for flood risk assessment for Nam Loei bazin, Thailand. In Proceedings of the EIT International Conference on Water Resources Engineering, Bangkok, Thailand, 18–19 August 2011. [Google Scholar]
- Demirel, M.C.; Venancio, A.; Kahya, E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv. Eng. Softw. 2009, 40, 467–473. [Google Scholar] [CrossRef]
- Sintondji, L. Modelling the Rainfall-Runoff Process in the Upper Ouémé Catchment (Térou in Benin Republic) in a Context of Global Change: Extrapolation from the Local to the Regional Scale. Ph.D. Thesis, Hydrology and Environmental management of the Mathematics and the Natural Sciences Faculty of the University of Bonn, Bonn, Germany, 2005. [Google Scholar]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrolog. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Gassman, P.W.; Balmer, C.; Siemers, M.; Srinivasan, R. The SWAT Literature Database: Overview of Database Structure and Key SWAT Literature Trends. Texas Water Resources Institute Technical Report—TR-472. 2014. Available online: http://swat.tamu.edu/conferences/2014/ (accessed on 16 October 2017).
- Barthel, R.; Sonneveld, B.G.J.S.; Götzinger, J.; Keyzer, M.A.; Pande, S.; Printz, A.; Gaiser, T. Integrated assessment of groundwater resources in the Ouémé basin, Benin, West Africa. Phys. Chem. Earth 2009, 34, 236–250. [Google Scholar] [CrossRef]
- Regh, T.; Bossa, A.Y.; Diekkrüger, B. Scenario-based simulations of the impacts of rainfall variability and management options on maize production in Benin. African J. Agric. Res. 2014, 9, 3393–3410. [Google Scholar] [CrossRef]
- Worou, O.N.; Gaiser, T.; Saito, K.; Goldbach, H.; Ewert, F. Spatial and temporal variation in yield of rainfed lowland rice in inland valley as affected by fertilizer application and bunding in North-West Benin. Agric. Water Manag. 2013, 126, 119–124. [Google Scholar] [CrossRef]
- Worou, O.N.; Gaiser, T.; Saito, K.; Goldbach, H.; Ewert, F. Simulation of soil water dynamics and rice crop growth as affected by bunding and fertilizer application in inland valley systems of West Africa. Agric. Ecosyst. Environ. 2012, 162, 24–35. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Danvi, A.; Giertz, S.; Zwart, S.J.; Diekkrüger, B. Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin. Agric. Water Manag. 2017, 192, 257–270. [Google Scholar] [CrossRef]
- AMMA-CATCH Database. 2015. Available online: http://bd.amma-catch.org/amma-catch2/main.jsf (accessed on 5 February 2016).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Bossa, A.Y. Multi-Scale Modeling of Sediment and Nutrient Flow Dynamics in the Ouémé Watershed (Benin)—Towards an Assessment of Global Change Effects on Soil Degradation and Water Quality. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2012. [Google Scholar]
- Cournac, L.; Dubois, M.A.; Chave, J.; Riéra, B. Fast determination of light availability and leaf area index in tropical forests. J. Tropical Ecol. 2002, 18, 295–302. [Google Scholar] [CrossRef]
- De Wasseige, C.; Bastin, D.; Defourny, P. Seasonal variation of tropical forest LAI based on field measurements in Central African Republic. Forest Meteorol. 2003, 119, 181–194. [Google Scholar] [CrossRef]
- Mulindabigwi, V. Influence des Systèmes Agraires sur l’Utilisation des Terroirs, la Séquestration du Carbone et la Sécurité Alimentaire Dans le Bassin Versant de L’OUEME Supérieur au Bénin. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2005. [Google Scholar]
- Orthmann, B. Vegetation Ecology of a Woodland-Savannah Mosaic in Central Benin (West Africa): Ecosystem Analysis with a Focus on the Impact of Selective Logging. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2005. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and UncertaintyPrograms—A User Manual; Swiss Federal Institute of Aquatic Science and Technology (EAWAG): Zurich, Switzerland, 2014. [Google Scholar]
- Lohou, F.; Kergoat, L.; Guichard, F.; Boone, A.; Cappelaere, B.; Cohard, J.M.; Demarty, J.; Galle, S.; Grippa, M.; Peugeot, C.; et al. Surface response to rain events throughout the West African monsoon. Atmos. Chem. Phys. 2014, 14, 3883–3898. [Google Scholar] [CrossRef] [Green Version]
- Paeth, H.; Born, K.; Girmes, R.; Podzun, R.; Jacob, D. Regional climate change in tropical Africa under greenhouse forcing and land-use changes. J. Clim. 2009, 22, 114–132. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Fourth Assessment Report; Intergovernmental Panel on Climate Change: Rome, Italy, 2007; Available online: https://www.ipcc.ch/report/ar4/ (accessed on 12 April 2017).
- Speth, P.; Christoph, M.; Diekkrüger, B. Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa; Springer: Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Eguchi, S.; Kasuya, M. Soil Science and Plant Nutrition Examination of the water balance of irrigated paddy fields in SWAT 2009 using the curve number procedure and the pothole module Examination of the water balance of irrigated paddy fields in SWAT 2009 using the curve number. Soil Sci. Plant Nutr. 2014, 60, 551–564. [Google Scholar] [CrossRef]
- Schmitter, P.; Zwart, S.J.; Danvi, A.; Gbaguidi, F. Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley. Agric. Water Manag. 2015, 152, 286–298. [Google Scholar] [CrossRef]
- Soylu, M.E.; Istanbulluoglu, E.; Lenters, J.D.; Wang, T. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region. Hydrol. Earth Syst. Sci. 2011, 15, 787–806. [Google Scholar] [CrossRef] [Green Version]
- Agele, S.O.; Anifowose, A.Y.; Agbona, I.A. Irrigation scheduling effects on components of water balance and performance of dry season Fadama-Grown Pepper in an inland valley Ecosystem in a Humid Tropical Environment. Int. J. Plant Soil Sci. 2015, 4, 171–184. [Google Scholar] [CrossRef]
- Ligaray, M.; Kim, H.; Sthiannopkao, S.; Lee, S.; Cho, K.H.; Kim, J.H. Assessment on hydrologic response by climate change in the Chao Phraya river basin, Thailand. Water 2015, 7, 6892–6909. [Google Scholar] [CrossRef]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C. Urban growth, climate change and freshwater availability. Proc. National Acad. Sci. 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed]
- National Climate Assessment (NCA). Climate Change Impacts in The United States: The Third National Climate Assessment. U.S. Global Change Research Program. 2014. Available online: http://s3.amazonaws.com/nca2014/high/NCA3_Climate_Change_Impacts_in_the_United%20States_HighRes.pdf (accessed on 12 April 2017).
- Tao, C.; Chen, X.L.; Lu, J.Z.; Gassman, P.W.; Sabine, S.; José-Miguel, S.P. Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model. Int. J. Agric. Biol. Eng. 2015, 8, 95–109. [Google Scholar]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing soil to achieve greater water use efficiency: A review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Peng, S.; Xing, D.; Qin, J.; Laza, R.C.; Punzalan, B.R. Water use efficiency and physiological response of rice cultivars under alternate wetting and drying conditions. Sci. World J. 2012, 2012, 287907. [Google Scholar] [CrossRef] [PubMed]
- Roose, E. Land Husbandry–Components and Strategy. In FAO Soils Bulletin; Food and Agriculture Organization: Rome, Italy, 1996; Volume 70. [Google Scholar]
- Becker, M.; Johnson, D.E. Improved water control and crop management effects on lowland rice productivity in West Africa. Nut. Cycl. Agroecosyst. 2001, 59, 119–127. [Google Scholar] [CrossRef]
- Asubonteng, O.K. Characterization and evaluation of inland valley watersheds for sustainable agricultural production: case study of semi-deciduous forest zone in the Ashanti Region of Ghana. Tropics 2001, 10, 539–554. [Google Scholar] [CrossRef]
- Touré, A.; Becker, M.; Johnson, D.E.; Koné, B.; Kossou, D.K.; Kiepe, P. Response of lowland rice in agronomic management under different hydrological regimes inland valley of Ivory Coast. Field Crops Res. 2009, 114, 304–310. [Google Scholar] [CrossRef]
Single Scenarios | |
Scenarios | Description |
A1B and B1 | Climate scenarios from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC) |
L1 and L2 | Land use change scenarios of 25% (L1) and 75% (L2) lowland conversion |
a and b | Traditional cultivation system with (a) and without (b) fertilizer application |
RA1 and RA2 | Rainfed-bunded system with (RA1) and without (RA2) fertilizer application |
First Cluster of Scenarios Combination | |
Scenarios | Description |
A1B/B1+L1+b and A1B/B1+L2+b | Combined climate and Land use change scenarios under traditional rice cultivation system without fertilizer application |
Second Cluster of Scenarios Combination | |
Scenarios | Description |
A1B/B1+L1+a and A1B/B1+L2+a | Combined climate and Land use change scenarios under traditional rice cultivation system with fertilizer application |
A1B/B1+L1+RA1 and A1B/B1+L2+RA1 | |
Combined climate and Land use change scenarios under rainfed-bunded rice cultivation system with fertilizer application | |
A1B/B1+L1+RA2 and A1B/B1+L2+RA2 | |
Combined climate and Land use change scenarios under rainfed-bunded rice cultivation system without fertilizer application |
Components (mm) | Kounga | Tossahou | Kpandouga | ||||||
---|---|---|---|---|---|---|---|---|---|
Annual | Dry | Wet | Annual | Dry | Wet | Annual | Dry | Wet | |
PREC | 1258 | 5 | 176 | 1258 | 5 | 176 | 1258 | 5 | 176 |
SURQ | 125 | 0 | 18 | 95 | 0 | 14 | 78 | 0 | 11 |
LATQ | 160 | 1 | 22 | 88 | 0 | 12 | 52 | 1 | 7 |
GWQ | 78 | 2 | 10 | 207 | 0 | 29 | 322 | 2 | 45 |
PERC | 137 | 3 | 18 | 267 | 3 | 36 | 360 | 0 | 51 |
ETa | 832 | 38 | 92 | 807 | 33 | 92 | 768 | 30 | 89 |
ETp | 1672 | 165 | 121 | 1672 | 165 | 121 | 1672 | 165 | 121 |
WYD | 370 | 3 | 51 | 404 | 2 | 56 | 470 | 4 | 64 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danvi, A.; Giertz, S.; Zwart, S.J.; Diekkrüger, B. Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin. Water 2018, 10, 74. https://doi.org/10.3390/w10010074
Danvi A, Giertz S, Zwart SJ, Diekkrüger B. Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin. Water. 2018; 10(1):74. https://doi.org/10.3390/w10010074
Chicago/Turabian StyleDanvi, Alexandre, Simone Giertz, Sander J. Zwart, and Bernd Diekkrüger. 2018. "Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin" Water 10, no. 1: 74. https://doi.org/10.3390/w10010074